Show simple item record

dc.contributor.authorBarrera Salazar, Daniel Roberto
dc.contributor.authorGao, Shan
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Matemàtiques
dc.date.accessioned2017-12-04T10:14:08Z
dc.date.available2018-12-01T01:31:01Z
dc.date.issued2017-11-01
dc.identifier.citationBarrera, D., Gao, S. Overconvergent Eichler-Shimura isomorphisms for quaternionic modular forms over Q. "International journal of number theory", 1 Novembre 2017, vol. 13, núm. 10, p. 2684-2712.
dc.identifier.issn1793-0421
dc.identifier.urihttp://hdl.handle.net/2117/111520
dc.description.abstractIn this work we construct overconvergent Eichler-Shimura isomorphisms over Shimura curves over Q. More precisely, for a prime p > 3 and a wide open disk U in the weight space, we construct a Hecke-Galois-equivariant morphism from the space of families of overconvergent modular symbols over U to the space of families of overconvergent modular forms over U . In addition, for all but finitely many weights λ ∈ U , this morphism provides a description of the finite slope part of the space of overconvergent modular symbols of weight λ in terms of the finite slope part of the space of overconvergent modular forms of weight λ + 2. Moreover, for classical weights these overconvergent isomorphisms are compatible with the classical Eichler-Shimura isomorphism.
dc.format.extent29 p.
dc.language.isoeng
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Spain
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Àlgebra::Teoria de nombres
dc.subject.lcshNumber theory
dc.subject.otherOverconvergent modular symbols
dc.subject.otheroverconvergent modular forms
dc.subject.otherp-adic comparison isomorphisms
dc.subject.otherquaternionic modular forms
dc.titleOverconvergent Eichler-Shimura isomorphisms for quaternionic modular forms over Q
dc.typeArticle
dc.subject.lemacIsomorfismes (Matemàtica)
dc.identifier.doi10.1142/S1793042117501494
dc.subject.amsClassificació AMS::11 Number theory
dc.relation.publisherversionhttp://www.worldscientific.com/doi/abs/10.1142/S1793042117501494
dc.rights.accessOpen Access
local.identifier.drac21592341
dc.description.versionPostprint (author's final draft)
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/H2020/682152/EU/Euler systems and the conjectures of Birch and Swinnerton-Dyer, Bloch and Kato/BSD
local.citation.authorBarrera, D.; Gao, S.
local.citation.publicationNameInternational journal of number theory
local.citation.volume13
local.citation.number10
local.citation.startingPage2684
local.citation.endingPage2712


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Spain
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 3.0 Spain