Show simple item record

dc.contributor.authorMarqués Truyol, Francisco
dc.contributor.authorMeseguer Serrano, Álvaro
dc.contributor.authorMellibovsky Elstein, Fernando
dc.contributor.authorWeidman, Patrick
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Física
dc.date.accessioned2017-11-30T15:52:09Z
dc.date.available2017-11-30T15:52:09Z
dc.date.issued2017-06-07
dc.identifier.citationMarques, F., Meseguer, A., Mellibovsky, F., Weidman, P. Extensional channel flow revisited: a dynamical systems perspective. "Proceedings of the Royal Society A. Mathematical physical and engineering sciences", 7 Juny 2017, vol. 473, núm. 2202, p. 1-23.
dc.identifier.issn1364-5021
dc.identifier.urihttp://hdl.handle.net/2117/111393
dc.description.abstractExtensional self-similar flows in a channel are explored numerically for arbitrary stretching–shrinking rates of the confining parallel walls. The present analysis embraces time integrations, and continuations of steady and periodic solutions unfolded in the parameter space. Previous studies focused on the analysis of branches of steady solutions for particular stretching–shrinking rates, although recent studies focused also on the dynamical aspects of the problems. We have adopted a dynamical systems perspective, analysing the instabilities and bifurcations the base state undergoes when increasing the Reynolds number. It has been found that the base state becomes unstable for small Reynolds numbers, and a transitional region including complex dynamics takes place at intermediate Reynolds numbers, depending on the wall acceleration values. The base flow instabilities are constitutive parts of different codimension-two bifurcations that control the dynamics in parameter space. For large Reynolds numbers, the restriction to self-similarity results in simple flows with no realistic behaviour, but the flows obtained in the transition region can be a valuable tool for the understanding of the dynamics of realistic Navier–Stokes solutions.
dc.format.extent23 p.
dc.language.isoeng
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Spain
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Física
dc.subject.lcshFluid mechanics
dc.subject.lcshBifurcation theory
dc.subject.otherfluid dynamics
dc.subject.otherbifurcations
dc.subject.otherself-similar solutions
dc.subject.otherspectral continuation methods
dc.titleExtensional channel flow revisited: a dynamical systems perspective
dc.typeArticle
dc.subject.lemacMecànica de fluids
dc.subject.lemacBifurcació, Teoria de la
dc.contributor.groupUniversitat Politècnica de Catalunya. DF - Dinàmica No Lineal de Fluids
dc.identifier.doi10.1098/rspa.2017.0151
dc.relation.publisherversionhttp://rspa.royalsocietypublishing.org/content/473/2202/20170151
dc.rights.accessOpen Access
local.identifier.drac21495167
dc.description.versionPostprint (author's final draft)
local.citation.authorMarques, F.; Meseguer, A.; Mellibovsky, F.; Weidman, P.
local.citation.publicationNameProceedings of the Royal Society A. Mathematical physical and engineering sciences
local.citation.volume473
local.citation.number2202
local.citation.startingPage1
local.citation.endingPage23


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record