Experimental characterization of the transition to coherence collapse in a semiconductor laser with optical feedback
View/Open
Cita com:
hdl:2117/111176
Document typeArticle
Defense date2017-11-01
PublisherInstitute of Physics (IOP)
Rights accessOpen Access
Except where otherwise noted, content on this work
is licensed under a Creative Commons license
:
Attribution-NonCommercial-NoDerivs 3.0 Spain
Abstract
Semiconductor lasers with time-delayed optical feedback display a wide range of dynamical regimes, which have found various practical applications. They also provide excellent testbeds for data analysis tools for characterizing complex signals. Recently, several of us have analyzed experimental intensity time-traces and quantitatively identified the onset of different dynamical regimes, as the laser current increases. Specifically, we identified the onset of low-frequency fluctuations (LFFs), where the laser intensity displays abrupt dropouts, and the onset of coherence collapse (CC), where the intensity fluctuations are highly irregular. Here we map these regimes when both, the laser current and the feedback strength vary. We show that the shape of the distribution of intensity fluctuations (characterized by the standard deviation, the skewness, and the kurtosis) allows to distinguish among noise, LFFs and CC, and to quantitatively determine (in spite of the gradual nature of the transitions) the boundaries of the three regimes. Ordinal analysis of the interdropout time intervals consistently identifies the three regimes occurring in the same parameter regions as the analysis of the intensity distribution. Simulations of the well-known time-delayed Lang-Kobayashi model are in good qualitative agreement with the observations.
CitationPanozzo, M., C. Quintero-Quiroz, Tiana, J., Torrent, M.C., Masoller, C. Experimental characterization of the transition to coherence collapse in a semiconductor laser with optical feedback. "Chaos", 1 Novembre 2017, vol. 27, núm. 11.
ISSN1054-1500
Publisher versionhttp://aip.scitation.org/doi/10.1063/1.4986441
Files | Description | Size | Format | View |
---|---|---|---|---|
experimental.pdf | 1,410Mb | View/Open |