Show simple item record

dc.contributor.authorÁlvarez Montaner, Josep
dc.contributor.authorHuneke, Craig
dc.contributor.authorNúñez-Betancourt, Luis
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Matemàtiques
dc.date.accessioned2017-11-22T12:51:57Z
dc.date.available2019-12-01T01:26:04Z
dc.date.issued2017-12-01
dc.identifier.citationAlvarez, J., Huneke, C., Núñez-Betancourt, L. D-modules, Bernstein-Sato polynomials and F-invariants of direct summands. "Advances in mathematics", 1 Desembre 2017, vol. 321, p. 298-325.
dc.identifier.issn0001-8708
dc.identifier.urihttp://hdl.handle.net/2117/111072
dc.description.abstractWe study the structure of D -modules over a ring R which is a direct sum- mand of a polynomial or a power series ring S with coefficients over a field. We relate properties of D -modules over R to D -modules over S . We show that the localization R f and the local cohomology module H i I ( R ) have finite length as D -modules over R . Furthermore, we show the existence of the Bernstein-Sato polynomial for elements in R . In positive characteristic, we use this relation between D -modules over R and S to show that the set of F -jumping numbers of an ideal I ¿ R is contained in the set of F -jumping numbers of its extension in S . As a consequence, the F -jumping numbers of I in R form a
dc.format.extent28 p.
dc.language.isoeng
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Spain
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística
dc.subject.lcshAlgebraic geometry
dc.subject.lcshCommutative algebra
dc.subject.lcshRings (Algebra)
dc.subject.otherD-modules
dc.subject.otherBernstein–Sato polynomial
dc.subject.otherDirect summands
dc.subject.otherLocal cohomology
dc.subject.otherF-jumping numbers
dc.subject.otherTest ideals
dc.titleD-modules, Bernstein-Sato polynomials and F-invariants of direct summands
dc.typeArticle
dc.subject.lemacAnells (Àlgebra)
dc.subject.lemacGeometria algebraica
dc.subject.lemacÀlgebra commutativa
dc.contributor.groupUniversitat Politècnica de Catalunya. GEOMVAP - Geometria de Varietats i Aplicacions
dc.identifier.doi10.1016/j.aim.2017.09.019
dc.description.peerreviewedPeer Reviewed
dc.subject.amsClassificació AMS::14 Algebraic geometry::14F (Co)homology theory
dc.subject.amsClassificació AMS::13 Commutative rings and algebras::13N Differential algebra
dc.subject.amsClassificació AMS::13 Commutative rings and algebras::13A General commutative ring theory
dc.subject.amsClassificació AMS::16 Associative rings and algebras::16S Rings and algebras arising under various constructions
dc.relation.publisherversionhttp://www.sciencedirect.com/science/article/pii/S0001870817302657?via%3Dihub
dc.rights.accessOpen Access
local.identifier.drac21597591
dc.description.versionPostprint (author's final draft)
local.citation.authorAlvarez, J.; Huneke, C.; Núñez-Betancourt, L.
local.citation.publicationNameAdvances in mathematics
local.citation.volume321
local.citation.startingPage298
local.citation.endingPage325


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Spain
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 3.0 Spain