Estimation of dynamic models using kernel density
View/Open
Estimation of dynamic models using kernel density pilar muñoz.pdf (326,9Kb) (Restricted access)
Request copy
Què és aquest botó?
Aquest botó permet demanar una còpia d'un document restringit a l'autor. Es mostra quan:
- Disposem del correu electrònic de l'autor
- El document té una mida inferior a 20 Mb
- Es tracta d'un document d'accés restringit per decisió de l'autor o d'un document d'accés restringit per política de l'editorial
Cita com:
hdl:2117/11106
Document typeConference lecture
Defense date2002-08
Rights accessRestricted access - publisher's policy
All rights reserved. This work is protected by the corresponding intellectual and industrial
property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public
communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
The objective of this work is to present a simple approach to deal with a dynamic model without imposing any assumptions on the error distribution. Using a state-space representation the model does not need any optimization procedure to estimate the system parameters because it is optimized during an iterative process of prediction and filtering. The kernel approach obviates the need to estimate the usual unknown paramenters related to error densities.
CitationFont, X.; Muñoz, M.; Marti, M. Estimation of dynamic models using kernel density. A: International Conference on Computational Statistics. "15th International Conference on Computational Statistics". Berlín: 2002, p. 49-50.
ISBN0873-4275
Files | Description | Size | Format | View |
---|---|---|---|---|
Estimation of d ... el density pilar muñoz.pdf | 326,9Kb | Restricted access |