Show simple item record

dc.contributor.authorCáceres, Jose
dc.contributor.authorHernando Martín, María del Carmen
dc.contributor.authorMora Giné, Mercè
dc.contributor.authorPelayo Melero, Ignacio Manuel
dc.contributor.authorPuertas González, María Luz
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Matemàtica Aplicada I
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Matemàtica Aplicada II
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Matemàtica Aplicada III
dc.date.accessioned2011-01-19T11:51:30Z
dc.date.available2011-01-19T11:51:30Z
dc.date.created2010-12
dc.date.issued2010-12
dc.identifier.citationCáceres, J. [et al.]. On the geodetic and the hull numbers in strong product graphs. "Computers & mathematics with applications", Desembre 2010, vol. 60, núm. 11, p. 3020-3031.
dc.identifier.issn0898-1221
dc.identifier.urihttp://hdl.handle.net/2117/11103
dc.description.abstractA set S of vertices of a connected graph G is convex, if for any pair of vertices u,vS, every shortest path joining u and v is contained in S. The convex hull CH(S) of a set of vertices S is defined as the smallest convex set in G containing S. The set S is geodetic, if every vertex of G lies on some shortest path joining two vertices in S, and it is said to be a hull set if its convex hull is V(G). The geodetic and the hull numbers of G are the minimum cardinality of a geodetic and a minimum hull set, respectively. In this work, we investigate the behavior of both geodetic and hull sets with respect to the strong product operation for graphs. We also establish some bounds for the geodetic number and the hull number and obtain the exact value of these parameters for a number of strong product graphs.
dc.format.extent12 p.
dc.language.isoeng
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Spain
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística
dc.subject.lcshGraph theory
dc.titleOn the geodetic and the hull numbers in strong product graphs
dc.typeArticle
dc.subject.lemacGrafs, Teoria de
dc.contributor.groupUniversitat Politècnica de Catalunya. COMBGRAPH - Combinatòria, Teoria de Grafs i Aplicacions
dc.contributor.groupUniversitat Politècnica de Catalunya. DCCG - Grup de recerca en geometria computacional, combinatoria i discreta
dc.identifier.doi10.1016/j.camwa.2010.10.001
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttp://www.elsevier.com/wps/find/journaldescription.cws_home/301/description#description
dc.rights.accessRestricted access - publisher's policy
drac.iddocument4478518
dc.description.versionPostprint (published version)
upcommons.citation.authorCáceres, J.; Hernando, M.; Mora, M.; Pelayo, I.; Puertas, M. Luz
upcommons.citation.publishedtrue
upcommons.citation.publicationNameComputers & mathematics with applications
upcommons.citation.volume60
upcommons.citation.number11
upcommons.citation.startingPage3020
upcommons.citation.endingPage3031


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Except where otherwise noted, content on this work is licensed under a Creative Commons license: Attribution-NonCommercial-NoDerivs 3.0 Spain