Picos, a hardware task-dependence manager for task-based dataflow programming models
dc.contributor.author | Tan, Xubin |
dc.contributor.author | Bosch, Jaume |
dc.contributor.author | Vidal-Piñol, Miquel |
dc.contributor.author | Álvarez, Carlos |
dc.contributor.author | Jiménez-González, Daniel |
dc.contributor.author | Ayguadé Parra, Eduard |
dc.contributor.author | Valero Cortés, Mateo |
dc.contributor.other | Universitat Politècnica de Catalunya. Departament d'Arquitectura de Computadors |
dc.contributor.other | Barcelona Supercomputing Center |
dc.date.accessioned | 2017-11-20T15:06:33Z |
dc.date.issued | 2017 |
dc.identifier.citation | Tan, X., Bosch, J., Vidal, M., Álvarez, C., Jiménez-González, D., Ayguade, E., Valero, M. Picos, a hardware task-dependence manager for task-based dataflow programming models. A: International Conference on High Performance Computing and Simulation. "HPCS 2017: 2017 International Conference on High Performance Computing & Simulation: proceedings: 17-21 July 2017: Genoa, Italy". Genoa: Institute of Electrical and Electronics Engineers (IEEE), 2017, p. 878-880. |
dc.identifier.isbn | 978-1-5386-3249-9 |
dc.identifier.uri | http://hdl.handle.net/2117/110924 |
dc.description.abstract | Task-based programming Task-based programming models such as OpenMP, Intel TBB and OmpSs are widely used to extract high level of parallelism of applications executed on multi-core and manycore platforms. These programming models allow applications to be expressed as a set of tasks with dependences to drive their execution at runtime. While managing these dependences for task with coarse granularity proves to be highly beneficial, it introduces noticeable overheads when targeting fine-grained tasks, diminishing the potential speedups or even introducing performance losses. To overcome this drawback, we propose a hardware/software co-design Picos that manages inter-task dependences efficiently. In this paper we describe the main ideas of our proposal and a prototype implementation. This prototype is integrated with a parallel task- based programming model and evaluated with real executions in Linux embedded system with two ARM Cortex-A9 and a FPGA. When compared with a software runtime, our solution results in more than 1.8x speedup and 40% of energy savings with only 2 threads. |
dc.description.sponsorship | This work is supported by the projects SEV-2015-0493 and TIN2015-65316-P, by the project 2014-SGR-1051 and 2014-SGR-1272, by the RoMoL GA 321253 and by the project cooperation agreement with LG Electronics, and thank the Xilinx University Program. |
dc.format.extent | 3 p. |
dc.language.iso | eng |
dc.publisher | Institute of Electrical and Electronics Engineers (IEEE) |
dc.subject | Àrees temàtiques de la UPC::Informàtica::Arquitectura de computadors::Arquitectures paral·leles |
dc.subject.lcsh | High performance computing |
dc.subject.lcsh | Parallel processing (Electronic computers) |
dc.subject.other | High performance computing |
dc.subject.other | Computational modeling |
dc.subject.other | Field-flow fractionation |
dc.subject.other | Fine-grain parallelism and architectures |
dc.subject.other | Data flow machines |
dc.subject.other | Reconfigurable computing & FPGA based architectures |
dc.title | Picos, a hardware task-dependence manager for task-based dataflow programming models |
dc.type | Conference report |
dc.subject.lemac | Càlcul intensiu (Informàtica) |
dc.subject.lemac | Processament en paral·lel (Ordinadors) |
dc.contributor.group | Universitat Politècnica de Catalunya. CAP - Grup de Computació d'Altes Prestacions |
dc.identifier.doi | 10.1109/HPCS.2017.134 |
dc.relation.publisherversion | http://ieeexplore.ieee.org/abstract/document/8035173/ |
dc.rights.access | Open Access |
local.identifier.drac | 21548847 |
dc.description.version | Postprint (published version) |
dc.relation.projectid | info:eu-repo/grantAgreement/MINECO/PE2013-2016/TIN2015-65316-P |
dc.relation.projectid | info:eu-repo/grantAgreement/EC/FP7/321253/EU/Riding on Moore's Law/ROMOL |
dc.date.lift | 10000-01-01 |
local.citation.author | Tan, X.; Bosch, J.; Vidal, M.; Álvarez, C.; Jiménez-González, D.; Ayguade, E.; Valero, M. |
local.citation.contributor | International Conference on High Performance Computing and Simulation |
local.citation.pubplace | Genoa |
local.citation.publicationName | HPCS 2017: 2017 International Conference on High Performance Computing & Simulation: proceedings: 17-21 July 2017: Genoa, Italy |
local.citation.startingPage | 878 |
local.citation.endingPage | 880 |
Files in this item
This item appears in the following Collection(s)
All rights reserved. This work is protected by the corresponding intellectual and industrial
property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public
communication or transformation of this work are prohibited without permission of the copyright holder