Show simple item record

dc.contributor.authorNavarro Guerrero, Juan José
dc.contributor.authorLlaberia Griñó, José M.
dc.contributor.authorValero Cortés, Mateo
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Arquitectura de Computadors
dc.contributor.otherFacultat d'Informàtica de Barcelona
dc.identifier.citationNavarro, J., Llaberia, J., Valero, M. "Solving matrix problems with no size restriction on a systolic array processor". 1986.
dc.descriptionThis work was supported by Ministery of Education of Spain (CAICYT) under Grant Number 2906-83 C03-03
dc.description.abstractIn this paper we propose several data structures partitioning and transformation schemes, in order to get an efficient execution of various matrix algorithms without any size resriction. The following matrix operations are considered: -Matrix-Matrix multiplication -Solving triangular matrix equations -L-U decomposition -Inverses of triangular and dense matrices All these algorithms are to be executed on a problem-size independent sprial systolic array processor. The array topology is fixed, and a simple feedback and control are needed. For all the algorithms that have been considered, the PE's utilization tends to the maximum possible value.
dc.format.extent30 p.
dc.relation.ispartofseriesRR 86/01
dc.subjectÀrees temàtiques de la UPC::Informàtica::Arquitectura de computadors
dc.subject.lcshArray processors
dc.titleSolving matrix problems with no size restriction on a systolic array processor
dc.typeExternal research report
dc.subject.lemacProcessadors de matrius (arrays)
dc.contributor.groupUniversitat Politècnica de Catalunya. CAP - Grup de Computació d'Altes Prestacions
dc.rights.accessOpen Access
dc.description.versionPostprint (published version)
upcommons.citation.authorNavarro, J.; Llaberia, J.; Valero, M.

Files in this item


This item appears in the following Collection(s)

Show simple item record

All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder