Show simple item record

dc.contributor.authorGarcía Planas, María Isabel
dc.contributor.authorMagret Planas, Maria dels Dolors
dc.contributor.authorUm, Laurence Emilie
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Matemàtiques
dc.date.accessioned2017-11-15T09:51:08Z
dc.date.available2017-11-15T09:51:08Z
dc.date.issued2017
dc.identifier.citationGarcia-Planas, M.I., Magret, M. D., Um, L. E. Monomial codes seen as invariant subspaces. "Open Mathematics", 2017, vol. 15, núm. 1, p. 1099-1107.
dc.identifier.issn2391-5455
dc.identifier.urihttp://hdl.handle.net/2117/110655
dc.description.abstractIt is well known that cyclic codes are very useful because of their applications, since they are not computationally expensive and encoding can be easily implemented. The relationship between cyclic codes and invariant subspaces is also well known. In this paper a generalization of this relationship is presented between monomial codes over a finite field ¿ and hyperinvariant subspaces of ¿n under an appropriate linear transformation. Using techniques of Linear Algebra it is possible to deduce certain properties for this particular type of codes, generalizing known results on cyclic codes.
dc.format.extent9 p.
dc.language.isoeng
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Spain
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística
dc.subject.lcshCoding theory
dc.subject.lcshRings (Algebra)
dc.subject.otherMonomial codes
dc.subject.otherInvariant subspaces
dc.titleMonomial codes seen as invariant subspaces
dc.typeArticle
dc.subject.lemacCodificació, Teoria de la
dc.subject.lemacAnells (Àlgebra)
dc.contributor.groupUniversitat Politècnica de Catalunya. SCL-EG - Sistemes de Control Lineals: estudi Geomètric
dc.identifier.doi10.1515/math-2017-0093
dc.description.peerreviewedPeer Reviewed
dc.subject.amsClassificació AMS::94 Information And Communication, Circuits::94B Theory of error-correcting codes and error-detecting codes
dc.subject.amsClassificació AMS::15 Linear and multilinear algebra; matrix theory
dc.relation.publisherversionhttps://www.degruyter.com/view/j/math.2017.15.issue-1/math-2017-0093/math-2017-0093.xml
dc.rights.accessOpen Access
drac.iddocument21329433
dc.description.versionPostprint (author's final draft)
upcommons.citation.authorGarcia-Planas, M.I., Magret, M. D., Um, L. E.
upcommons.citation.publishedtrue
upcommons.citation.publicationNameOpen Mathematics
upcommons.citation.volume15
upcommons.citation.number1
upcommons.citation.startingPage1099
upcommons.citation.endingPage1107


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Except where otherwise noted, content on this work is licensed under a Creative Commons license: Attribution-NonCommercial-NoDerivs 3.0 Spain