Deep learning for freezing of gait detection in Parkinson’s disease patients in their homes using a waist-worn inertial measurement unit

Cita com:
hdl:2117/110570
Document typeArticle
Defense date2017-10-16
Rights accessOpen Access
This work is protected by the corresponding intellectual and industrial property rights.
Except where otherwise noted, its contents are licensed under a Creative Commons license
:
Attribution-NonCommercial-NoDerivs 3.0 Spain
Abstract
Among Parkinson’s disease (PD) motor symptoms, freezing of gait (FOG) may
be the most incapacitating. FOG episodes may result in falls and reduce patients’
quality of life. Accurate assessment of FOG would provide objective information
to neurologists about the patient’s condition and the symptom’s characteristics,
while it could enable non-pharmacologic support based on rhythmic
cues.
This paper is, to the best of our knowledge, the first study to propose a
deep learning method for detecting FOG episodes in PD patients. This model
is trained using a novel spectral data representation strategy which considers information from both the previous and current signal windows. Our approach
was evaluated using data collected by a waist-placed inertial measurement unit
from 21 PD patients who manifested FOG episodes. These data were also employed
to reproduce the state-of-the-art methodologies, which served to perform
a comparative study to our FOG monitoring system.
The results of this study demonstrate that our approach successfully outperforms
the state-of-the-art methods for automatic FOG detection. Precisely, the
deep learning model achieved 90% for the geometric mean between sensitivity
and specificity, whereas the state-of-the-art methods were unable to surpass the
83% for the same metric.
CitationCamps, J., Sama, A., Martin, M., Rodriguez-Martin, D., Perez, C., Moreno, J., Cabestany, J., Catala, A., Alcaine, S., Mestre, B., Prats, A., Crespo, M. Cruz, Counihan, T., Browne, P., Quinlan, L., ÓLaighin, G., Sweeney, D., Lewy, H., Vainstein, G., Costa, A., Annicchiarico, R., Bayés, À., Rodríguez, A. Deep learning for freezing of gait detection in Parkinson’s disease patients in their homes using a waist-worn inertial measurement unit. "Knowledge-based systems", 16 Octubre 2017, vol. 139, p. 119-131.
ISSN0950-7051
Publisher versionhttp://www.sciencedirect.com/science/article/pii/S0950705117304859
Collections
- CETpD -Centre d'Estudis Tecnològics per a l'Atenció a la Dependència i la Vida Autònoma - Articles de revista [31]
- Departament de Ciències de la Computació - Articles de revista [1.106]
- Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial - Articles de revista [1.494]
- KEMLG - Grup d'Enginyeria del Coneixement i Aprenentatge Automàtic - Articles de revista [125]
- Departament d'Enginyeria Electrònica - Articles de revista [1.835]
Files | Description | Size | Format | View |
---|---|---|---|---|
PAPER_Elsevier___Revised_Second (3).pdf | 1,132Mb | View/Open |