Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
59.620 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Centres de recerca
  • BSC - Barcelona Supercomputing Center
  • Life Sciences
  • Articles de revista
  • View Item
  •   DSpace Home
  • E-prints
  • Centres de recerca
  • BSC - Barcelona Supercomputing Center
  • Life Sciences
  • Articles de revista
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The ins and outs of vanillyl alcohol oxidase: Identification of ligand migration paths

Thumbnail
View/Open
The INS AND OUTS.pdf (11,40Mb)
Share:
 
 
10.1371/journal.pcbi.1005787
 
  View Usage Statistics
Cita com:
hdl:2117/110493

Show full item record
Gygli, Gudrun
Lucas, Maria F.
Guallar, VictorMés informació
van Berkel, Willhem J.H.
Document typeArticle
Defense date2017-10-06
PublisherPublic Library of Science
Rights accessOpen Access
Attribution-NonCommercial-NoDerivs 4.0 Spain
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 4.0 Spain
ProjectINDOX - Optimized oxidoreductases for medium and large scale industrial biotransformations (EC-FP7-613549)
Abstract
Vanillyl alcohol oxidase (VAO) is a homo-octameric flavoenzyme belonging to the VAO/PCMH family. Each VAO subunit consists of two domains, the FAD-binding and the cap domain. VAO catalyses, among other reactions, the two-step conversion of p-creosol (2-methoxy-4-methylphenol) to vanillin (4-hydroxy-3-methoxybenzaldehyde). To elucidate how different ligands enter and exit the secluded active site, Monte Carlo based simulations have been performed. One entry/exit path via the subunit interface and two additional exit paths have been identified for phenolic ligands, all leading to the si side of FAD. We argue that the entry/exit path is the most probable route for these ligands. A fourth path leading to the re side of FAD has been found for the co-ligands dioxygen and hydrogen peroxide. Based on binding energies and on the behaviour of ligands in these four paths, we propose a sequence of events for ligand and co-ligand migration during catalysis. We have also identified two residues, His466 and Tyr503, which could act as concierges of the active site for phenolic ligands, as well as two other residues, Tyr51 and Tyr408, which could act as a gateway to the re side of FAD for dioxygen. Most of the residues in the four paths are also present in VAO’s closest relatives, eugenol oxidase and p-cresol methylhydroxylase. Key path residues show movements in our simulations that correspond well to conformations observed in crystal structures of these enzymes. Preservation of other path residues can be linked to the electron acceptor specificity and oligomerisation state of the three enzymes. This study is the first comprehensive overview of ligand and co-ligand migration in a member of the VAO/PCMH family, and provides a proof of concept for the use of an unbiased method to sample this process.
 
Enzymes are bionanomachines, which speed up chemical reactions in organisms. To understand how they achieve that, we need to study their mechanisms. Computational enzymology can show us what happens in the enzyme’s active site during a reaction. But molecules need first to reach the active site before a reaction can start. The process of substrate entry and product exit to the active site is often neglected when studying enzymes. However, these two events are of fundamental importance to the proper functioning of any enzyme. We are interested in these dynamic processes to complete our understanding of the mode of action of enzymes. In our work, we have studied substrate and product migration in vanillyl alcohol oxidase. This enzyme can produce the flavour vanillin and enantiopure alcohols, but also catalyses other reactions. The named products are of interest to the flavour- and fine-chemical industries.
CitationGygli, G. [et al.]. The ins and outs of vanillyl alcohol oxidase: Identification of ligand migration paths. "PLoS Computational Biology", 6 Octubre 2017, vol. 13, núm. 10. 
URIhttp://hdl.handle.net/2117/110493
DOI10.1371/journal.pcbi.1005787
ISSN1553-734X
Publisher versionhttp://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1005787
Collections
  • Life Sciences - Articles de revista [318]
Share:
 
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
The INS AND OUTS.pdf11,40MbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina