Show simple item record

dc.contributor.authorCotik, Viviana
dc.contributor.authorRodríguez Hontoria, Horacio
dc.contributor.authorVivaldi, Jorge
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Ciències de la Computació
dc.date.accessioned2017-11-09T07:34:45Z
dc.date.available2017-11-09T07:34:45Z
dc.date.issued2017-04-30
dc.identifier.citationCotik, V., Rodríguez, H., Vivaldi, J. Arabic medical entity tagging using distant learning in a multilingual framework. "Journal of King Saud University-Computer and Information Sciences", 30 Abril 2017, vol. 29, núm. 2, p. 204-211.
dc.identifier.issn1319-1578
dc.identifier.urihttp://hdl.handle.net/2117/110166
dc.description.abstractA semantic tagger aiming to detect relevant entities in Arabic medical documents and tagging them with their appropriate semantic class is presented. The system takes profit of a Multilingual Framework covering four languages (Arabic, English, French, and Spanish), in a way that resources available for each language can be used to improve the results of the others, this is specially important for less resourced languages as Arabic. The approach has been evaluated against Wikipedia pages of the four languages belonging to the medical domain. The core of the system is the definition of a base tagset consisting of the three most represented classes in SNOMED-CT taxonomy and the learning of a binary classifier for each semantic category in the tagset and each language, using a distant learning approach over three widely used knowledge resources, namely Wikipedia, Dbpedia, and SNOMED-CT.
dc.format.extent8 p.
dc.language.isoeng
dc.publisherElsevier
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Spain
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Informàtica::Intel·ligència artificial::Llenguatge natural
dc.subject.lcshMachine learning
dc.subject.lcshNatural language processing (Computer science)
dc.subject.otherSemantic tagging
dc.subject.otherMultilingual
dc.subject.otherMedical domain
dc.subject.otherArabic natural language processing
dc.titleArabic medical entity tagging using distant learning in a multilingual framework
dc.typeArticle
dc.subject.lemacAprenentatge automàtic
dc.subject.lemacTractament del llenguatge natural
dc.contributor.groupUniversitat Politècnica de Catalunya. GPLN - Grup de Processament del Llenguatge Natural
dc.identifier.doi10.1016/j.jksuci.2016.10.004
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttp://www.sciencedirect.com/science/article/pii/S1319157816300854
dc.rights.accessOpen Access
local.identifier.drac21099838
dc.description.versionPostprint (published version)
local.citation.authorCotik, V.; Rodríguez, H.; Vivaldi, J.
local.citation.publicationNameJournal of King Saud University-Computer and Information Sciences
local.citation.volume29
local.citation.number2
local.citation.startingPage204
local.citation.endingPage211


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record