A family of asymptotically good binary fingerprinting codes
View/Open
FamilyAsymptoticallyGood.pdf (228,4Kb) (Restricted access)
Request copy
Què és aquest botó?
Aquest botó permet demanar una còpia d'un document restringit a l'autor. Es mostra quan:
- Disposem del correu electrònic de l'autor
- El document té una mida inferior a 20 Mb
- Es tracta d'un document d'accés restringit per decisió de l'autor o d'un document d'accés restringit per política de l'editorial
Document typeArticle
Defense date2010-10
Rights accessRestricted access - publisher's policy
Abstract
A fingerprinting code is a set of codewords that are embedded in each copy of a digital object with the purpose of making each copy unique. If the fingerprinting code is c-secure with error, then the decoding of a pirate word created by a coalition of at most c dishonest users, will expose at least one of the guilty parties with probability 1-ϵ. The Boneh-Shaw fingerprinting codes are n-secure codes with ϵB error, where n also denotes the number of authorized users. Unfortunately, the length the Boneh-Shaw codes should be of order O(n3 log(n/ϵB)), which is prohibitive for practical applications. In this paper, we prove that the Boneh-Shaw codes are (c<; n)-secure for lengths of order O(nc2 log(n/ϵB)). Moreover, in this paper it is also shown how to use these codes to construct binary fingerprinting codes of length L=O(c6 log(c/ϵ) log n), with probability of error ϵ<;ϵB and an identification algorithm of complexity poly(log n)=poly(L). These results improve in some aspects the best known schemes and with a much more simple construction.
CitationCotrina, J.; Fernandez, M. A family of asymptotically good binary fingerprinting codes. "IEEE transactions on information theory", Octubre 2010, vol. 56, núm. 10, p. 5335-5343.
ISSN0018-9448
Files | Description | Size | Format | View |
---|---|---|---|---|
FamilyAsymptoticallyGood.pdf![]() | 228,4Kb | Restricted access |
All rights reserved. This work is protected by the corresponding intellectual and industrial
property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public
communication or transformation of this work are prohibited without permission of the copyright holder