Show simple item record

dc.contributor.authorMuntés Mulero, Víctor
dc.contributor.authorAguilar Saborit, Josep
dc.contributor.authorLarriba Pey, Josep
dc.contributor.authorZuzarte, Calisto
dc.contributor.authorMarkl, Volker
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Arquitectura de Computadors
dc.date.accessioned2007-06-15T10:38:25Z
dc.date.available2007-06-15T10:38:25Z
dc.date.created2006
dc.date.issued2006
dc.identifier.citationMuntés Mulero, Victor [et al.]. An inside analysis of a genetic-programming based optimizer. A: Desai, Bipin C.; Gupta, S. K. (eds). Proceedings 10th International Database Engineering and Applications Symposium: IDEAS 2006. Los Alamitos, California [etc.]: IEEE Computer Society, 2006. p. 249-255.
dc.identifier.isbn0-7695-2577-6; 978-0-7695-2577-8
dc.identifier.issn1098-8068
dc.identifier.urihttp://hdl.handle.net/2117/1090
dc.description.abstractThe use of evolutionary algorithms has been proposed as a powerful random search strategy to solve the join order problem. Specifically, genetic programming used in query optimization has been proposed as an alternative to the limitations of dynamic programming with large join queries. However, very little is known about the impact and behavior of the genetic operations used in this type of algorithms. In this paper, we present an analysis that helps us to understand the effect of these operations during the optimization execution. Specifically, we study five different aspects: the age of the members in the population in terms of generations, the number of query execution plans (QEP) discarded without producing new offsprings, the average QEP life time in generations, the efficiency of the genetic operations and the evolution of the best cost. All in all, our analysis allows us to understand the impact of crossovers compared to mutation operations and the dynamically changing effects of these operations.
dc.language.isoeng
dc.publisherInstitute of Electrical and Electronics Engineers
dc.relation.ispartofDatabase Engineering and Applications Symposium: IDEAS 2006
dc.subjectÀrees temàtiques de la UPC::Informàtica::Arquitectura de computadors
dc.subjectÀrees temàtiques de la UPC::Informàtica::Sistemes d'informació::Bases de dades
dc.subject.lcshComputer Architecture
dc.subject.lcshDynamic programming
dc.subject.lcshGenetic algorithms
dc.subject.lcshQuerying (Computer science)
dc.subject.lcshRelational databases
dc.subject.otherInside analysis
dc.subject.otherGenetic optimizer
dc.subject.otherDynamic programming
dc.subject.otherGenetic algorithms
dc.subject.otherQuery formulation
dc.subject.otherQuery processing
dc.subject.otherRelational databases
dc.subject.otherEvolutionary algorithms
dc.subject.otherGenetic-programming based optimizer
dc.subject.otherJoin order problem
dc.subject.otherQuery execution plans
dc.subject.otherQuery optimization
dc.subject.otherRandom search strategy
dc.titleAn inside analysis of a genetic-programming based optimizer
dc.typeConference report
dc.subject.lemacArquitectura de computadors
dc.subject.lemacProgramació dinàmica
dc.subject.lemacAlgorismes genètics
dc.subject.lemacBases de dades -- Interrogació
dc.subject.lemacBases de dades relacionals
dc.contributor.groupUniversitat Politècnica de Catalunya. DAMA-UPC - Data Management Group
dc.date.end2006-12-14
dc.date.start2006-12-11
dc.description.peerreviewedPeer Reviewed
dc.rights.accessOpen Access


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder