Show simple item record

dc.contributor.authorNaicu, Dragos I.
dc.date.accessioned2017-10-24T14:04:42Z
dc.date.available2017-10-24T14:04:42Z
dc.date.issued2015-10-19
dc.identifier.isbn978-94-944-244-8-9
dc.identifier.urihttp://hdl.handle.net/2117/109059
dc.description.abstractThe problem of finding the tallest possible column that can be constructed from a given volume of material without buckling under its own weight was finally solved by Keller and Niordson in 1966. The cross-sectional size of the column reduces with height so that there is less weight near the top and more bending stiffness near the base. Their theory can also be applied to tall buildings if the weight is adjusted to include floors, live load, cladding and finishes. In this paper we simplify the Keller and Niordson derivation and extend the theory to materials with non-linear elasticity, effectively limiting the stress in the vertical structure of the building. The result is one highly non-linear ordinary differential equation which we solve using dynamic relaxation.
dc.format.extent12 p.
dc.language.isoeng
dc.publisherCIMNE
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Anàlisi numèrica::Mètodes en elements finits
dc.subject.lcshFinite element method
dc.subject.lcshAir-supported structures
dc.subject.otherColumn buckling
dc.subject.otherNon-linear material
dc.subject.otherSelf-weight
dc.subject.otherDynamic relaxation
dc.subject.otherTallest column
dc.subject.otherOptimal design
dc.titleThe use of dynamic relaxation to solve the differential equation describing the shape of the tallest possible building
dc.typeConference lecture
dc.subject.lemacEstructures pneumàtiques
dc.rights.accessOpen Access
local.citation.contributorStructural Membranes 2015
local.citation.pubplaceBarcelona
local.citation.publicationNameTextiles composites and inflatable structures VII : proceedings of the VII International Conference on Textile Composites and Inflatable Structures, Barcelona, Spain. 19-21 October, 2015
local.citation.startingPage34
local.citation.endingPage45


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder