A finite version of the Kakeya problem
Visualitza/Obre
Estadístiques de LA Referencia / Recolecta
Inclou dades d'ús des de 2022
Cita com:
hdl:2117/108967
Tipus de documentArticle
Data publicació2016-06-02
Condicions d'accésAccés obert
Llevat que s'hi indiqui el contrari, els
continguts d'aquesta obra estan subjectes a la llicència de Creative Commons
:
Reconeixement-NoComercial-SenseObraDerivada 3.0 Espanya
Abstract
Let L be a set of lines of an affine space over a field and let S be a set of points with the property that every line of L is incident with at least N points of S. Let D be the set of directions of the lines of L considered as points of the projective space at infinity. We give a geometric construction of a set of lines L, where D contains an Nn−1 grid and where S has size 2( 1 2N) n plus smaller order terms, given a starting configuration in the plane. We provide examples of such starting configurations for the reals and for finite fields. Following Dvir’s proof of the finite field Kakeya conjecture and the idea of using multiplicities of Dvir, Kopparty, Saraf and Sudan, we prove a lower bound on the size of S dependent on the ideal generated by the homogeneous polynomials vanishing on D. This bound is maximised as ( 1 2N) n plus smaller order terms, for n > 4, when D contains the points of a Nn−1 grid.
CitacióBall, S., Blokhuis, A., Domenzain, D. A finite version of the Kakeya problem. "The australasian journal of combinatorics", 2 Juny 2016, vol. 65, núm. 3, p. 251-260.
ISSN1034-4942
Fitxers | Descripció | Mida | Format | Visualitza |
---|---|---|---|---|
finitekakeya.pdf | 308,9Kb | Visualitza/Obre |