Show simple item record

dc.contributor.authorCrusat Codina, Laura
dc.contributor.authorCarol, Ignacio
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Enginyeria Civil i Ambiental
dc.date.accessioned2017-10-17T11:40:27Z
dc.date.available2017-10-17T11:40:27Z
dc.date.issued2017
dc.identifier.citationCrusat, L., Carol, I. Application of configurational mechanics to crack propagation. A: International Conference on Computational Plasticity. "Computational Plasticity XIV: Fundamentals and Applications: proceedings of the XIVInternational Conference on Computational Plasticity: Fundamentals and Applications, held in Barcelona, Spain 5-7September 2017". Barcelona: International Centre for Numerical Methods in Engineering (CIMNE), 2017, p. 797-805.
dc.identifier.isbn978-84-946909-6-9
dc.identifier.urihttp://hdl.handle.net/2117/108747
dc.description.abstractCrack initiation and propagation is an essential aspect in the mechanical behavior of a large variety of materials and structures in all fields of Engineering and, in particular, the prediction of crack trajectories is one of the major challenges of existing numerical methods. Classical procedures to fix crack direction have been based on local criteria such as maximum (tensile) hope stress. However, Fracture Mechanics principles suggest that global criteria should be used instead, such as maximizing structural energy release rates. An emerging trend along this way is based on Configurational Mechanics, which describes a dual version of the mechanical problem in terms of configurational pseudo-stresses, pseudo-forces, etc. all with a physical meaning related to the change in global structural elastic energy caused by changes in the structural geometry (configuration). In the FEM context, these concepts are applied to optimize the total energy of the mesh with respect to reference coordinates using the discrete configurational forces. Configurational stresses given by Eshelby’s energy-momentum tensor may be integrated using standard expressions to give configurational nodal forces. Adequate treatment of these forces in the context of iterative FE calculations, may lead to prediction of crack trajectories in terms of global structural energy.
dc.format.extent9 p.
dc.language.isoeng
dc.publisherInternational Centre for Numerical Methods in Engineering (CIMNE)
dc.subjectÀrees temàtiques de la UPC::Enginyeria civil::Materials i estructures
dc.subject.lcshMaterials--Mechanical properties
dc.subject.otherConfigurational mechanics
dc.subject.othercrack initiation
dc.subject.otherpropagation
dc.subject.otherfracture mechanics
dc.titleApplication of configurational mechanics to crack propagation
dc.typeConference report
dc.subject.lemacMaterials -- Propietats mecàniques
dc.contributor.groupUniversitat Politècnica de Catalunya. MECMAT - Mecànica de Materials
dc.rights.accessOpen Access
local.identifier.drac21562905
dc.description.versionPostprint (published version)
dc.relation.referencesP. Steinmann, M. Scherer, and R. Denzer, "Secret and joy of configurational mechanics: From foundations in continuum mechanics to applications in computational mechanics" ZAMM-Journal of Applied Mathematics and Mechanics, 89, 614-630 (2009).##link:https://dx.doi.org/10.1002/zamm.200800132
dc.relation.referencesJ.D. Eshelby, "The elastic energy-momentum tensor" Journal of Elasticity 5.3-4, 321-335 (1975).
dc.relation.referencesMiehe, and E. Gürses. "A robust algorithm for configurational-force-driven brittle crack propagation with R-adaptive mesh alignment." International Journal for Numerical Methods in Engineering 72.2, 127-155 (2007).##link:https://dx.doi.org/10.1007/b137232
dc.relation.referencesR. Mueller, and G.A. Maugin. " On material forces and finite element discretizations " Computational mechanics, 29.1, 52-60 (2002).
dc.relation.referencesR Mueller, S. Kolling, and D. Gross. " On configurational forces in the context of the finite element method. " International Journal for Numerical Methods in Engineering, 53.7, 1557-1574 (2002).##link:https://dx.doi.org/10.1016/S0167-6636(98)00047-7
dc.relation.referencesR. Mueller, D. Gross and G. A. Maugin. " Use of material forces in adaptive finite element methods. " Computational Mechanics, 33.6, 421-434 (2004).##link:https://dx.doi.org/10.1007/s00466-003-0543-z
dc.relation.referencesR. Mueller and D. Gross. " Discrete Material Forces in the Finite Element Method. " In Mechanics of Material Forces (pp. 105-114). Springer US (2005).##link:https://dx.doi.org/10.1007/0-387-26261-X_11
local.citation.authorCrusat, L.; Carol, I.
local.citation.contributorInternational Conference on Computational Plasticity
local.citation.pubplaceBarcelona
local.citation.publicationNameComputational Plasticity XIV: Fundamentals and Applications: proceedings of the XIVInternational Conference on Computational Plasticity: Fundamentals and Applications, held in Barcelona, Spain 5-7September 2017
local.citation.startingPage797
local.citation.endingPage805


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder