Mostra el registre d'ítem simple

dc.contributor.authorLepej, Peter
dc.contributor.authorSantamaria Navarro, Àngel
dc.contributor.authorSolà, Joan
dc.contributor.otherInstitut de Robòtica i Informàtica Industrial
dc.date.accessioned2017-10-16T13:14:00Z
dc.date.available2017-10-16T13:14:00Z
dc.date.issued2017
dc.identifier.citationLepej, P.; Santamaria, A.; Solà, J. A flexible hardware-in-the-loop architecture for UAVs. A: International Conference on Unmannead Aircraft Systems. "The 2017 International Conference on Unmannead Aircraft Systems, Miami, USA, June 13th-16th, 2017". Miami: 2017, p. 1751-1756. DOI 10.1109/ICUAS.2017.7991330.
dc.identifier.urihttp://hdl.handle.net/2117/108722
dc.description© 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
dc.description.abstractAs robotic technology matures, fully autonomous robots become a realistic possibility, but demand very complex solutions to be rapidly engineered. In order to be able to quickly set up a working autonomous system, and to reduce the gap between simulated and real experiments, we propose a modular, upgradeable and flexible hardware-in-the-loop (HIL) architecture, which hybridizes the simulated and real settings. We take as use case the autonomous exploration of dense forests with UAVs, with the aim of creating useful maps for forest inspection, cataloging, or to compute other metrics such as total wood volume. As the first step in the development of the full system, in this paper we implement a fraction of this architecture, comprising assisted localization, and automatic methods for mapping, planning and motion execution. Specifically we are able to simulate the use of a 3D LIDAR endowed below an actual UAV autonomously navigating among simulated obstacles, thus the platform safety is not compromised. The full system is modular and takes profit of pieces either publicly available or easily programmed. We highlight the flexibility of the proposed HIL architecture to rapidly configure different experimental setups with a UAV in challenging terrain. Moreover, it can be extended to other robotic fields without further design. The HIL system uses the multi-platform ROS capabilities and only needs a motion capture system as external extra hardware, which is becoming standard equipment in all research labs dealing with mobile robots.
dc.format.extent6 p.
dc.language.isoeng
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Spain
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Informàtica::Robòtica
dc.titleA flexible hardware-in-the-loop architecture for UAVs
dc.typeConference report
dc.contributor.groupUniversitat Politècnica de Catalunya. VIS - Visió Artificial i Sistemes Intel·ligents
dc.identifier.doi10.1109/ICUAS.2017.7991330
dc.description.peerreviewedPeer Reviewed
dc.subject.inspecClassificació INSPEC::Automation::Robots
dc.relation.publisherversionhttp://ieeexplore.ieee.org/document/7991330/
dc.rights.accessOpen Access
local.identifier.drac21493515
dc.description.versionPostprint (author's final draft)
dc.relation.projectidinfo:eu-repo/grantAgreement/EC/H2020/644271/EU/AErial RObotic system integrating multiple ARMS and advanced manipulation capabilities for inspection and maintenance/AEROARMS
dc.relation.referencesN. Koenig and A. Howard, " Design and use paradigms for gazebo, an open-source multi-robot simulator, " in Intelligent Robots and Sys- tems, 2004. (IROS 2004). Proceedings. 2004 IEEE/RSJ International Conference on, vol. 3, Sept 2004, pp. 2149–2154 vol.3.##link:https://dx.doi.org/10.1109/IROS.2004.1389727
dc.relation.referencesD. Jung, J. Ratti, and P. Tsiotras, " Real-time implementation and validation of a new hierarchical path planning scheme of uavs via hardware-in-the-loop simulation, " in Unmanned Aircraft Systems, K. Valavanis, P. Oh, and L. Piegl, Eds. Springer Netherlands, 2009, pp. 163–181.
dc.relation.referencesE. Mueller, Hardware-in-the-loop Simulation Design for Evaluation of Unmanned Aerial Vehicle Control Systems. American Institute of Aeronautics and Astronautics, 2007.##link:https://dx.doi.org/10.2514/3.55755
dc.relation.referencesG. Cai, B. M. Chen, T. H. Lee, and M. Dong, " Design and imple- mentation of a hardware-in-the-loop simulation system for small-scale UAV helicopters, " Mechatronics, vol. 19, no. 7, pp. 1057–1066, Oct. 2009.##link:https://dx.doi.org/10.1016/j.mechatronics.2009.06.001
dc.relation.referencesY. A. Prabowo, B. R. Trilaksono, and F. R. Triputra, " Hardware in-the- loop simulation for visual servoing of fixed wing uav, " in Electrical Engineering and Informatics (ICEEI), 2015 International Conference on, Aug 2015, pp. 247–252.
dc.relation.referencesSufendi, B. R. Trilaksono, S. H. Nasution, and E. B. Purwanto, " Design and implementation of hardware-in-the-loop-simulation for uav using pid control method, " in Instrumentation, Communications, Information Technology, and Biomedical Engineering (ICICI-BME), 2013 3rd International Conference on, Nov 2013, pp. 124–130.##link:https://dx.doi.org/10.1109/ICICI-BME.2013.6698478
dc.relation.referencesJ. W. Grzywna, A. Jain, J. Plew, and M. C. Nechyba, " Rapid development of vision-based control for mavs through a virtual flight testbed, " in Proceedings of the 2005 IEEE International Conference on Robotics and Automation, April 2005, pp. 3696–3702.##link:https://dx.doi.org/10.1109/ROBOT.2005.1570683
dc.relation.referencesN. Gans, W. Dixon, R. Lind, and A. Kurdila, " A hardware in the loop simulation platform for vision-based control of unmanned air vehicles, " Mechatronics, vol. 19, no. 7, pp. 1043–1056, 2009.##link:https://dx.doi.org/10.1016/j.mechatronics.2009.06.014
dc.relation.referencesM. Dissanayake, P. Newman, S. Clark, H. F. Durrant-Whyte, and M. Csorba, " A solution to the simultaneous localization and map build- ing (slam) problem, " Robotics and Automation, IEEE Transactions on, vol. 17, no. 3, pp. 229–241, 2001.##link:https://dx.doi.org/10.1109/70.938381
dc.relation.referencesV. Ila, J. M. Porta, and J. Andrade-Cetto, " Information-based compact pose slam, " Robotics, IEEE Transactions on, vol. 26, no. 1, pp. 78–93, 2010.##link:https://dx.doi.org/10.1109/TRO.2009.2034435
dc.relation.referencesC. Roussillon, A. Gonzalez, J.Soì a, J.-M. Codol, N. Mansard, S. Lacroix, and M. Devy, " Rt-slam: a generic and real-time visual slam implementation, " in Computer Vision Systems. Springer, 2011, pp. 31–40.##link:https://dx.doi.org/10.1109/CVPR.2001.990517
dc.relation.referencesA. Hornung, K. M. Wurm, M. Bennewitz, C. Stachniss, and W. Bur- gard, " Octomap: An efficient probabilistic 3d mapping framework based on octrees, " Autonomous Robots, vol. 34, no. 3, pp. 189–206, 2013.##link:https://dx.doi.org/10.15607/RSS.2007.III.017
dc.relation.referencesR. Siegwart, I. R. Nourbakhsh, and D. Scaramuzza, Introduction to autonomous mobile robots. MIT press, 2011.
dc.relation.referencesC. Dornhege and A. Kleiner, " A frontier-void-based approach for autonomous exploration in 3d, " Advanced Robotics, vol. 27, no. 6, pp. 459–468, 2013.
dc.relation.referencesK. Cesare, R. Skeele, S.-H. Yoo, Y. Zhang, and G. Hollinger, " Multi- uav exploration with limited communication and battery, " in Robotics and Automation (ICRA), 2015 IEEE International Conference on, May 2015, pp. 2230–2235.
dc.relation.referencesC. Pravitra, G. Chowdhary, and E. Johnson, " A compact exploration strategy for indoor flight vehicles, " in Decision and Control and Eu- ropean Control Conference (CDC-ECC), 2011 50th IEEE Conference on. IEEE, 2011, pp. 3572–3577.##link:https://dx.doi.org/10.1109/CDC.2011.6161200
dc.relation.referencesB. Yamauchi, " A frontier-based approach for autonomous exploration, " in Computational Intelligence in Robotics and Automation, 1997. CIRA'97., Proceedings., 1997 IEEE International Symposium on. IEEE, 1997, pp. 146–151.##link:https://dx.doi.org/10.1109/CIRA.1997.613851
dc.relation.referencesA. A. A. Rizqi, A. I. Cahyadi, and T. B. Adji, " Path planning and formation control via potential function for uav quadrotor, " in Advanced Robotics and Intelligent Systems (ARIS), 2014 International Conference on. IEEE, 2014, pp. 165–170.##link:https://dx.doi.org/10.1109/ARIS.2014.6871517
dc.relation.referencesD. M. Rivera, F. A. Prieto, and R. Ramírez, " Trajectory planning for uavs in 3d environments using a moving band in potential sigmoid fields, " in Robotics Symposium and Latin American Robotics Symposium (SBR-LARS), 2012 Brazilian. IEEE, 2012, pp. 115–119.##link:https://dx.doi.org/10.1109/SBR-LARS.2012.26
dc.relation.referencesA. Akhtar, S. L. Waslander, and C. Nielsen, " Path following for a quadrotor using dynamic extension and transverse feedback lin- earization, " in Decision and Control (CDC), 2012 IEEE 51st Annual Conference on. IEEE, 2012, pp. 3551–3556.##link:https://dx.doi.org/10.1109/CDC.2012.6425945
local.citation.authorLepej, P.; Santamaria, A.; Solà, J.
local.citation.contributorInternational Conference on Unmannead Aircraft Systems
local.citation.pubplaceMiami
local.citation.publicationNameThe 2017 International Conference on Unmannead Aircraft Systems, Miami, USA, June 13th-16th, 2017
local.citation.startingPage1751
local.citation.endingPage1756


Fitxers d'aquest items

Thumbnail

Aquest ítem apareix a les col·leccions següents

Mostra el registre d'ítem simple