Show simple item record

dc.contributor.authorMarotta, Antonio
dc.contributor.authorD'Andreagiovanni, Fabio
dc.contributor.authorKassler, Andreas
dc.contributor.authorZola, Enrica Valeria
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Enginyeria Telemàtica
dc.date.accessioned2017-10-10T13:28:20Z
dc.date.available2019-04-02T00:30:46Z
dc.date.issued2017-10-09
dc.identifier.citationMarotta, A., D'Andreagiovanni, F., Kassler, A.J., Zola, E. On the energy cost of robustness for green virtual network function placement in 5G virtualized infrastructures. "Computer networks", 9 Octubre 2017, vol. 125, p. 64-75.
dc.identifier.issn1389-1286
dc.identifier.urihttp://hdl.handle.net/2117/108597
dc.description.abstractNext generation 5G networks will rely on virtualized Data Centers (vDC) to host virtualized network functions on commodity servers. Such Network Function Virtualization (NFV) will lead to significant savings in terms of infrastructure cost and reduced management complexity. However, green strategies for networking and computing inside data centers, such as server consolidation or energy aware routing, should not negatively impact the quality and service level agreements expected from network operators. In this paper, we study how robust strategies that place virtual network func- tions (VNF) inside vDC impact the energy savings and the protection level against resource demand uncertainty. We propose novel optimization mod- els that allow the minimization of the energy of the computing and network infrastructure which is hosting a set of service chains that implement the VNFs. The model explicitly provides for robustness to unknown or impre- cisely formulated resource demand variations, powers down unused routers, switch ports and servers, and calculates the energy optimal VNF placement and network embedding also considering latency constraints on the service chains. We propose both exact and heuristic methods. Our experiments were carried out using the virtualized Evolved Packet Core (vEPC), which allows us to quantitatively assess the trade-off between energy cost, robust- ness and the protection level of the solutions against demand uncertainty. Our heuristic is able to converge to a good solution in a very short time, in comparison to the exact solver, which is not able to output better results in a longer run as demonstrated by our numerical evaluation. We also study the degree of robustness of a solution for a given protection level and the cost of additional energy needed because of the usage of more computing and network elements.
dc.format.extent12 p.
dc.language.isoeng
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Spain
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subject.lcshComputer networks
dc.subject.lcshOptical communications
dc.subject.lcshCloud computing
dc.subject.otherVirtualization
dc.subject.otherBinary Linear Programming
dc.subject.otherRobust Optimization
dc.subject.otherNetwork Function Virtualization (NFV)
dc.subject.otherEPC
dc.subject.other5G
dc.titleOn the energy cost of robustness for green virtual network function placement in 5G virtualized infrastructures
dc.typeArticle
dc.subject.lemacTelecomunicació -- Xarxes
dc.subject.lemacComputació en núvol
dc.subject.lemacComunicacions òptiques
dc.subject.lemacOrdinadors, Xarxes d'
dc.contributor.groupUniversitat Politècnica de Catalunya. GRXCA - Grup de Recerca en Xarxes de Comunicacions Cel·lulars i Ad-hoc
dc.identifier.doi10.1016/j.comnet.2017.04.045
dc.description.peerreviewedPeer Reviewed
dc.rights.accessOpen Access
local.identifier.drac20328520
dc.description.versionPostprint (author's final draft)
local.citation.authorMarotta, A.; D'Andreagiovanni, F.; Kassler, A.J.; Zola, E.
local.citation.publicationNameComputer networks
local.citation.volume125
local.citation.startingPage64
local.citation.endingPage75


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Spain
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 3.0 Spain