Show simple item record

dc.contributor.authorRos Oton, Xavier
dc.contributor.authorSerra Montolí, Joaquim
dc.contributor.authorValdinoci, Enrico
dc.date.accessioned2017-10-06T11:57:44Z
dc.date.available2018-08-31T00:30:49Z
dc.date.issued2017-08-15
dc.identifier.citationRos, X., Serra, J., Valdinoci, E. Pohozaev identities for anisotropic integrodifferential operators. "Communications in partial differential equations", 15 Agost 2017, p. 1290-1321.
dc.identifier.issn0360-5302
dc.identifier.urihttp://hdl.handle.net/2117/108448
dc.description.abstractWe find and prove new Pohozaev identities and integration by parts type formulas for anisotropic integrodifferential operators of order 2s, with s¿(0,1). These identities involve local boundary terms, in which the quantity (Formula presented.) plays the role that ¿u/¿¿ plays in the second-order case. Here, u is any solution to Lu = f(x,u) in O, with u = 0 in RnO, and d is the distance to ¿O.
dc.format.extent32 p.
dc.language.isoeng
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Equacions diferencials i integrals
dc.subject.lcshPohozaev's identity
dc.subject.otherNonlocal operator
dc.subject.otherPohozaev identity
dc.subject.otherstable Lévy processes
dc.titlePohozaev identities for anisotropic integrodifferential operators
dc.typeArticle
dc.contributor.groupUniversitat Politècnica de Catalunya. EDP - Equacions en Derivades Parcials i Aplicacions
dc.identifier.doi10.1080/03605302.2017.1349148
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttp://www.tandfonline.com/doi/full/10.1080/03605302.2017.1349148
dc.rights.accessOpen Access
local.identifier.drac21554085
dc.description.versionPostprint (author's final draft)
local.citation.authorRos, X.; Serra, J.; Valdinoci, E.
local.citation.publicationNameCommunications in partial differential equations
local.citation.startingPage1290
local.citation.endingPage1321


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder