Show simple item record

dc.contributor.authorKarimimehr, Saeed
dc.contributor.authorMarateb, Hamid Reza
dc.contributor.authorMuceli, Silvia
dc.contributor.authorMansourian, Marjan
dc.contributor.authorMañanas Villanueva, Miguel Ángel
dc.contributor.authorFarina, Dario
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Enginyeria de Sistemes, Automàtica i Informàtica Industrial
dc.date.accessioned2017-10-04T10:37:32Z
dc.date.available2017-10-04T10:37:32Z
dc.date.issued2017-09-01
dc.identifier.citationKarimimehr, S., Marateb, H.R., Muceli, S., Mansourian, M., Mañanas, M.A., Farina, D. A real-time method for decoding the neural drive to muscles using single-channel intra-muscular EMG recordings. "International journal of neural systems", 1 Setembre 2017, vol. 27, núm. 6, p. 1-18.
dc.identifier.issn0129-0657
dc.identifier.urihttp://hdl.handle.net/2117/108320
dc.description.abstractThe neural command from motor neurons to muscles — sometimes referred to as the neural drive to muscle — can be identified by decomposition of electromyographic (EMG) signals. This approach can be used for inferring the voluntary commands in neural interfaces in patients with limb amputations. This paper proposes for the first time an innovative method for fully automatic and real-time intramuscular EMG (iEMG) decomposition. The method is based on online single-pass density-based clustering and adaptive classification of bivariate features, using the concept of potential measure. No attempt was made to resolve superimposed motor unit action potentials. The proposed algorithm was validated on sets of simulated and experimental iEMG signals. Signals were recorded from the biceps femoris long-head, vastus medialis and lateralis and tibialis anterior muscles during low-to-moderate isometric constant-force and linearly-varying force contractions. The average number of missed, duplicated and erroneous clusters for the examined signals was 0.5±0.80.5±0.8, 1.2±1.01.2±1.0, and 1.0±0.81.0±0.8, respectively. The average decomposition accuracy (defined similar to signal detection theory but without using True Negatives in the denominator) and coefficient of determination (variance accounted for) for the cumulative discharge rate estimation were 70±9%70±9%, and 94±5%94±5%, respectively. The time cost for processing each 200ms iEMG interval was 43±1643±16 (21–97)ms. However, computational time generally increases over time as a function of frames/signal epochs. Meanwhile, the incremental accuracy defined as the accuracy of real-time analysis of each signal epoch, was 74±1874±18% for epochs recorded after initial one second. The proposed algorithm is thus a promising new tool for neural decoding in the next-generation of prosthetic control.
dc.format.extent18 p.
dc.language.isoeng
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Spain
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Informàtica
dc.subject.lcshBiomedical engineering
dc.subject.otherNeural decoding
dc.subject.otherelectromyography
dc.subject.otherEMG Decomposition
dc.subject.otherprosthetic control
dc.subject.otheronline algorithms
dc.titleA real-time method for decoding the neural drive to muscles using single-channel intra-muscular EMG recordings
dc.typeArticle
dc.subject.lemacEnginyeria biomèdica
dc.contributor.groupUniversitat Politècnica de Catalunya. BIOART - BIOsignal Analysis for Rehabilitation and Therapy
dc.identifier.doi10.1142/S0129065717500253
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttp://www.worldscientific.com/doi/abs/10.1142/S0129065717500253
dc.rights.accessOpen Access
drac.iddocument21164403
dc.description.versionPostprint (published version)
upcommons.citation.authorKarimimehr, S., Marateb, H.R., Muceli, S., Mansourian, M., Mañanas, M.A., Farina, D.
upcommons.citation.publishedtrue
upcommons.citation.publicationNameInternational journal of neural systems
upcommons.citation.volume27
upcommons.citation.number6
upcommons.citation.startingPage1
upcommons.citation.endingPage18


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Except where otherwise noted, content on this work is licensed under a Creative Commons license: Attribution-NonCommercial-NoDerivs 3.0 Spain