Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
59.568 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Grups de recerca
  • MNT - Grup de Recerca en Micro i Nanotecnologies
  • Ponències/Comunicacions de congressos
  • View Item
  •   DSpace Home
  • E-prints
  • Grups de recerca
  • MNT - Grup de Recerca en Micro i Nanotecnologies
  • Ponències/Comunicacions de congressos
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A statistical based approach for fault detection and diagnosis in a photovoltaic system

Thumbnail
View/Open
article (878,4Kb)
Share:
 
 
10.1109/ICoSC.2017.7958710
 
  View Usage Statistics
Cita com:
hdl:2117/108119

Show full item record
Garoudja, Elyes
harrou, fouzi
Sun, Ying
kara, kamel
Chouder, Aissa
Silvestre Bergés, SantiagoMés informacióMés informacióMés informació
Document typeConference report
Defense date2017
PublisherInstitute of Electrical and Electronics Engineers (IEEE)
Rights accessOpen Access
All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
This paper reports a development of a statistical approach for fault detection and diagnosis in a PV system. Specifically, the overarching goal of this work is to early detect and identify faults on the DC side of a PV system (e.g., short-circuit faults; open-circuit faults; and partial shading faults). Towards this end, we apply exponentially-weighted moving average (EWMA) control chart on the residuals obtained from the one-diode model. Such a choice is motivated by the greater sensitivity of EWMA chart to incipient faults and its low-computational cost making it easy to implement in real time. Practical data from a 3.2 KWp photovoltaic plant located within an Algerian research center is used to validate the proposed approach. Results show clearly the efficiency of the developed method in monitoring PV system status.
Description
© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works
CitationGaroudja, E., harrou, F., Sun, Y., kara, K., Chouder, A., Silvestre, S. A statistical based approach for fault detection and diagnosis in a photovoltaic system. A: International Conference on Systems and Control. "2017 6th International Conference on Systems and Control (ICSC 2017): Batna, Algeria: 7-9 May 2017". Batna: Institute of Electrical and Electronics Engineers (IEEE), 2017, p. 75-80. 
URIhttp://hdl.handle.net/2117/108119
DOI10.1109/ICoSC.2017.7958710
ISBN978-1-5090-3961-6
Publisher versionhttp://ieeexplore.ieee.org/abstract/document/7958710/
Collections
  • MNT - Grup de Recerca en Micro i Nanotecnologies - Ponències/Comunicacions de congressos [141]
  • Departament d'Enginyeria Electrònica - Ponències/Comunicacions de congressos [1.637]
Share:
 
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
batna conference paper 2017.pdfarticle878,4KbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Cookies policy
  • Inici de la pàgina