Show simple item record

dc.contributor.authorRuiz Costa-Jussà, Marta
dc.contributor.authorAllauzen, Alexandre
dc.contributor.authorBarrault, loïc
dc.contributor.authorCho, Kyunghun
dc.contributor.authorSchwenk, Holger
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Teoria del Senyal i Comunicacions
dc.identifier.citationRuiz, M., Allauzen, A., Barrault, L., Cho, K., Schwenk, H. Introduction to the special issue on deep learning approaches for machine translation. "Computer speech and language", 2017, vol. 46, p. 367-373.
dc.description.abstractDeep learning is revolutionizing speech and natural language technologies since it is offering an effective way to train systems and obtaining significant improvements. The main advantage of deep learning is that, by developing the right architecture, the system automatically learns features from data without the need of explicitly designing them. This machine learning perspective is conceptually changing how speech and natural language technologies are addressed. In the case of Machine Translation (MT), deep learning was first introduced in standard statistical systems. By now, end-to-end neural MT systems have reached competitive results. This special issue introductory paper addresses how deep learning has been gradually introduced in MT. This introduction covers all topics contained in the papers included in this special issue, which basically are: integration of deep learning in statistical MT; development of the end-to-end neural MT system; and introduction of deep learning in interactive MT and MT evaluation. Finally, this introduction sketches some research directions that MT is taking guided by deep learning.
dc.format.extent7 p.
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Spain
dc.subjectÀrees temàtiques de la UPC::Informàtica::Intel·ligència artificial
dc.subject.lcshMachine translating
dc.subject.lcshNeural Networks (Computer)
dc.subject.otherDeep learning
dc.subject.otherMachine translation
dc.titleIntroduction to the special issue on deep learning approaches for machine translation
dc.subject.lemacTraducció automàtica
dc.subject.lemacAprenentatge automàtic
dc.contributor.groupUniversitat Politècnica de Catalunya. VEU - Grup de Tractament de la Parla
dc.description.peerreviewedPeer Reviewed
dc.rights.accessOpen Access
dc.description.versionPostprint (published version)
local.citation.authorRuiz, M.; Allauzen, A.; Barrault, L.; Cho, K.; Schwenk, H.
local.citation.publicationNameComputer speech and language

Files in this item


This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Spain
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 3.0 Spain