Show simple item record

dc.contributorOñate Ibáñez de Navarra, Eugenio
dc.contributorToledo Municio, Miguel Ángel
dc.contributor.authorSalazar González, Fernando
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Enginyeria Civil i Ambiental
dc.date.accessioned2017-09-25T00:31:29Z
dc.date.available2017-09-25T00:31:29Z
dc.date.issued2017-02-23
dc.identifier.citationSalazar González, F. "A machine learning based methodology for anomaly detection in dam behaviour". Tesi doctoral, UPC, Departament d'Enginyeria Civil i Ambiental, 2017.
dc.identifier.urihttp://hdl.handle.net/2117/107943
dc.description.abstractDam behaviour is difficult to predict with high accuracy. Numerical models for structural calculation solve the equations of continuum mechanics, but are subject to considerable uncertainty as to the characterisation of materials, especially with regard to the foundation. As a result, these models are often incapable to calculate dam behaviour with sufficient precision. Thus, it is difficult to determine whether a given deviation between model results and monitoring data represent a relevant anomaly or incipient failure. By contrast, there is a tendency towards automatising dam monitoring devices, which allows for increasing the reading frequency and results in a greater amount and variety of data available, such as displacements, leakage, or interstitial pressure, among others. This increasing volume of dam monitoring data makes it interesting to study the ability of advanced tools to extract useful information from observed variables. In particular, in the field of Machine Learning (ML), powerful algorithms have been developed to face problems where the amount of data is much larger or the underlying phenomena is much less understood. In this thesis, the possibilities of machine learning techniques were analysed for application to dam structural analysis based on monitoring data. The typical characteristics of the data sets available in dam safety were taking into account, as regards their nature, quality and size. A critical literature review was performed, from which the key issues to consider for implementation of these algorithms in dam safety were identified. A comparative study of the accuracy of a set of algorithms for predicting dam behaviour was carried out, considering radial and tangential displacements and leakage flow in a 100-m high dam. The results suggested that the algorithm called ``Boosted Regression Trees'' (BRT) is the most suitable, being more accurate in general, while flexible and relatively easy to implement. At a later stage, the possibilities of interpretation of the mentioned algorithm were evaluated, to identify the shape and intensity of the association between external variables and the dam response, as well as the effect of time. The tools were applied to the same test case, and allowed more accurate identification of the time effect than the traditional statistical method. Finally, a methodology for the implementation of predictive models based on BRT for early detection of anomalies was developed and implemented in an interactive tool that provides information on dam behaviour, through a set of selected devices. It allows the user to easily verify whether the actual data for each of these devices are within a pre-defined normal operation interval.
dc.description.abstractEl comportamiento estructural de las presas de embalse es difícil de predecir con precisión. Los modelos numéricos para el cálculo estructural resuelven las ecuaciones de la mecánica de medios continuos, pero están sujetos a una gran incertidumbre en cuanto a la caracterización de los materiales, especialmente en lo que respecta a la cimentación. Como consecuencia, frecuentemente estos modelos no son capaces de calcular el comportamiento de las presas con suficiente precisión. Así, es difícil discernir si un estado que se aleja en cierta medida de la normalidad supone o no una situación de riesgo estructural. Por el contrario, muchas de las presas en operación cuentan con un gran número de aparatos de auscultación, que registran la evolución de diversos indicadores como los movimientos, el caudal de filtración, o la presión intersticial, entre otros. Aunque hoy en día hay muchas presas con pocos datos observados, hay una tendencia clara hacia la instalación de un mayor número de aparatos que registran el comportamiento con mayor frecuencia. Como consecuencia, se tiende a disponer de un volumen creciente de datos que reflejan el comportamiento de la presa, lo cual hace interesante estudiar la capacidad de herramientas desarrolladas en otros campos para extraer información útil a partir de variables observadas. En particular, en el ámbito del Aprendizaje Automático (Machine Learning), se han desarrollado algoritmos muy potentes para entender fenómenos cuyo mecanismo es poco conocido, acerca de los cuales se dispone de grandes volúmenes de datos. En la tesis se ha hecho un análisis de las posibilidades de las técnicas más recientes de aprendizaje automático para su aplicación al análisis estructural de presas basado en los datos de auscultación. Para ello se han tenido en cuenta las características habituales de las series de datos disponibles en las presas, en cuanto a su naturaleza, calidad y cantidad. Se ha realizado una revisión crítica de la bibliografía existente, a partir de la cual se han identificado los aspectos clave a tener en cuenta para implementación de estos algoritmos en la seguridad de presas. Se ha realizado un estudio comparativo de la precisión de un conjunto de algoritmos para la predicción del comportamiento de presas considerando desplazamientos radiales, tangenciales y filtraciones. Para ello se han utilizado datos reales de una presa bóveda. Los resultados sugieren que el algoritmo denominado ``Boosted Regression Trees'' (BRTs) es el más adecuado, por ser más preciso en general, además de flexible y relativamente fácil de implementar. En una etapa posterior, se han identificado las posibilidades de interpretación del citado algoritmo para extraer la forma e intensidad de la asociación entre las variables exteriores y la respuesta de la presa, así como el efecto del tiempo. Las herramientas empleadas se han aplicado al mismo caso piloto, y han permitido identificar el efecto del tiempo con más precisión que el método estadístico tradicional. Finalmente, se ha desarrollado una metodología para la aplicación de modelos de predicción basados en BRTs en la detección de anomalías en tiempo real. Esta metodología se ha implementado en una herramienta informática interactiva que ofrece información sobre el comportamiento de la presa, a través de un conjunto de aparatos seleccionados. Permite comprobar a simple vista si los datos reales de cada uno de estos aparatos se encuentran dentro del rango de funcionamiento normal de la presa.
dc.format.extent259 p.
dc.language.isoeng
dc.publisherUniversitat Politècnica de Catalunya
dc.relationNota: Tesi per compendi de publicacions.
dc.relationNota: Versió una secció encriptada, per drets a'autor
dc.rightsL'accés als continguts d'aquesta tesi queda condicionat a l'acceptació de les condicions d'ús establertes per la següent llicència Creative Commons: http://creativecommons.org/licenses/by-nc-sa/4.0/
dc.rights.urihttp://creativecommons.org/licenses/by-nc-sa/4.0/
dc.sourceTDX (Tesis Doctorals en Xarxa)
dc.subjectÀrees temàtiques de la UPC::Enginyeria civil
dc.titleA machine learning based methodology for anomaly detection in dam behaviour
dc.typeDoctoral thesis
dc.rights.accessOpen Access
dc.description.versionPostprint (published version)
dc.identifier.tdxhttp://hdl.handle.net/10803/405808


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Except where otherwise noted, content on this work is licensed under a Creative Commons license: Attribution-NonCommercial-ShareAlike 4.0 Generic