Mostra el registre d'ítem simple

dc.contributor.authorCazorla, Claudio
dc.contributor.authorBoronat Medico, Jordi
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Física
dc.date.accessioned2017-09-20T17:05:24Z
dc.date.available2017-09-20T17:05:24Z
dc.date.issued2017-08-03
dc.identifier.citationCazorla, C., Boronat, J. Simulation and understanding of atomic and molecular quantum crystals. "Reviews of modern physics", 3 Agost 2017, vol. 89, núm. 3, p. 1-54.
dc.identifier.issn0034-6861
dc.identifier.urihttp://hdl.handle.net/2117/107841
dc.description.abstractQuantum crystals abound in the whole range of solid-state species. Below a certain threshold temperature the physical behavior of rare gases (4He and Ne), molecular solids (H2 and CH4), and some ionic (LiH), covalent (graphite), and metallic (Li) crystals can be explained only in terms of quantum nuclear effects (QNE). A detailed comprehension of the nature of quantum solids is critical for achieving progress in a number of fundamental and applied scientific fields such as planetary sciences, hydrogen storage, nuclear energy, quantum computing, and nanoelectronics. This review describes the current physical understanding of quantum crystals formed by atoms and small molecules, as well as the wide palette of simulation techniques that are used to investigate them. Relevant aspects in these materials such as phase transformations, structural properties, elasticity, crystalline defects, and the effects of reduced dimensionality are discussed thoroughly. An introduction to quantum Monte Carlo techniques, which in the present context are the simulation methods of choice, and other quantum simulation approaches (e.g., path-integral molecular dynamics and quantum thermal baths) is provided. The overarching objective of this article is twofold: first, to clarify in which crystals and physical situations the disregard of QNE may incur in important bias and erroneous interpretations. And second, to promote the study and appreciation of QNE, a topic that traditionally has been treated in the context of condensed matter physics, within the broad and interdisciplinary areas of materials science.
dc.format.extent54 p.
dc.language.isoeng
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Spain
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Física
dc.subject.lcshSolid state physics
dc.subject.lcshMonte Carlo method
dc.subject.otherMolecular quantum crystals
dc.titleSimulation and understanding of atomic and molecular quantum crystals
dc.typeArticle
dc.subject.lemacFísica de l'estat sòlid
dc.subject.lemacMontecarlo, Mètode de
dc.contributor.groupUniversitat Politècnica de Catalunya. SIMCON - First-principles approaches to condensed matter physics: quantum effects and complexity
dc.identifier.doi10.1103/RevModPhys.89.035003
dc.relation.publisherversionhttps://journals.aps.org/rmp/abstract/10.1103/RevModPhys.89.035003
dc.rights.accessOpen Access
local.identifier.drac21477847
dc.description.versionPostprint (author's final draft)
local.citation.authorCazorla, C.; Boronat, J.
local.citation.publicationNameReviews of modern physics
local.citation.volume89
local.citation.number3
local.citation.startingPage1
local.citation.endingPage54


Fitxers d'aquest items

Thumbnail

Aquest ítem apareix a les col·leccions següents

Mostra el registre d'ítem simple