Show simple item record

dc.contributor.authorSekulic, Ivan
dc.contributor.authorÚbeda Farré, Eduard
dc.contributor.authorRius Casals, Juan Manuel
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Teoria del Senyal i Comunicacions
dc.identifier.citationSekulic, I., Ubeda, E., Rius, J. Versatile and accurate schemes of discretization in the scattering analysis of 2-D composite objects with penetrable or perfectly conducting regions. "IEEE transactions on antennas and propagation", 1 Maig 2017, vol. 65, núm. 5, p. 2494-2506.
dc.description©2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
dc.description.abstractThe method-of-moment discretization of boundary integral equations in the scattering analysis of closed infinitely long (2-D) objects, perfectly conducting (PEC) or penetrable, is traditionally carried out with continuous piecewise linear basis functions, which embrace pairs of adjacent segments. This is numerically advantageous because the discretization of the transversal component of the scattered fields, electric (TE) or magnetic (TM), becomes free from hypersingular Kernel contributions. In the analysis of composite objects, though, the imposition of the continuity requirement around junction nodes, where the boundaries of several regions intersect, becomes especially awkward. In this paper, we present, for the scattering analysis of composite objects, a new combined discretization of the Poggio–Miller–Chang–Harrington–Wu–Tsai (PMCHWT) integral equation, for homogeneous dielectric regions, and the electric-field integral equation, for PEC regions, such that the basis functions are defined strictly on each segment, with no continuity constraint between adjacent segments. We show the improved observed accuracy with the proposed TE-PMCHWT implementation on several dielectric objects with sharp edges and corners and moderate or high contrasts. Furthermore, we illustrate the versatility of these schemes in the analysis of 2-D composite piecewise homogeneous objects without sacrificing accuracy with respect to the conventional implementations.
dc.format.extent13 p.
dc.subjectÀrees temàtiques de la UPC::Enginyeria de la telecomunicació::Radiocomunicació i exploració electromagnètica
dc.subjectÀrees temàtiques de la UPC::Física::Electromagnetisme
dc.subject.lcshElectric fields
dc.subject.lcshIntegral equations
dc.subject.lcshMoments method (Statistics)
dc.subject.otherComposite objects
dc.subject.otherElectric-field integral equation (EFIE)
dc.subject.otherIntegral equations
dc.subject.otherMethod of moments (MoM)
dc.subject.otherPoggio-Miller-Chang-Harrington-Wu-Tsai (PMCHWT) formulation
dc.titleVersatile and accurate schemes of discretization in the scattering analysis of 2-D composite objects with penetrable or perfectly conducting regions
dc.subject.lemacCamps elèctrics
dc.subject.lemacEquacions integrals
dc.contributor.groupUniversitat Politècnica de Catalunya. ANTENNALAB - Grup d'Antenes i Sistemes Radio
dc.description.peerreviewedPeer Reviewed
dc.rights.accessOpen Access
dc.description.versionPostprint (author's final draft)
upcommons.citation.authorSekulic, I., Ubeda, E., Rius, J.
upcommons.citation.publicationNameIEEE transactions on antennas and propagation

Files in this item


This item appears in the following Collection(s)

Show simple item record

All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder