Ceria catalysts at nanoscale: how do crystal shapes shape catalysis?

View/Open
Cita com:
hdl:2117/107674
Document typeArticle
Defense date2017-07-01
Rights accessOpen Access
All rights reserved. This work is protected by the corresponding intellectual and industrial
property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public
communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
Engineering the shape and size of catalyst particles and the interface between different components of heterogeneous catalysts at the nanometer level can radically alter their performances. This is particularly true with CeO2-based catalysts, where the precise control of surface atomic arrangements can modify the reactivity of Ce4+/Ce3+ ions, changing the oxygen release/uptake characteristics of ceria, which, in turn, strongly affects catalytic performance in several reactions like CO, soot, and VOC oxidation, WGS, hydrogenation, acid–base reactions, and so on. Despite the fact that many of these catalysts are polycrystalline with rather ill-defined morphologies, experimental and theoretical studies on well-defined nanocrystals have clearly established that the exposure of specific facets can increase/decrease surface oxygen reactivity and metal–support interaction (for supported metal nanoparticles), consequently affecting catalytic reactions. Here, we want to address the most recent developments in this area, showing that shape (and size) modification, surface/face reconstruction, and faceting of ceria at the nanoscale level can offer an important tool to govern activity and stability in several reactions and imagine how this could contribute to future developments.
CitationTrovarelli, A., Llorca, J. Ceria catalysts at nanoscale: how do crystal shapes shape catalysis?. "ACS catalysis", 1 Juliol 2017, vol. 7, núm. 7, p. 4716-4735.
ISSN2155-5435
Publisher versionhttp://pubs.acs.org/doi/10.1021/acscatal.7b01246
Files | Description | Size | Format | View |
---|---|---|---|---|
ACS Catalysis 2017.pdf | 2,486Mb | View/Open |