dc.contributor.author | Garoudja, Elyes |
dc.contributor.author | Chouder, Aissa |
dc.contributor.author | Kara, Kamel |
dc.contributor.author | Silvestre Bergés, Santiago |
dc.contributor.other | Universitat Politècnica de Catalunya. Departament d'Enginyeria Electrònica |
dc.date.accessioned | 2017-09-15T13:49:35Z |
dc.date.available | 2019-09-14T00:25:34Z |
dc.date.issued | 2017-09-14 |
dc.identifier.citation | Garoudja, E., Chouder, A., Kara, K., Silvestre, S. An enhanced machine learning based approach for failures detection and diagnosis of PV systems. "Energy Conversion and Management (ECM_4383)", 14 Setembre 2017, vol. 151, p. 496-513. |
dc.identifier.uri | http://hdl.handle.net/2117/107670 |
dc.description.abstract | In this paper, a novel procedure for fault detection and diagnosis in the direct current (DC) side of PV system, based on probabilistic neural network (PNN) classifier, is proposed. The suggested procedure consists of four main stages: (i) PV module parameters extraction, (ii) PV array simulation and experimental validation (iii) elaboration of a relevant database of both healthy and faulty operations, and (iv) network construction, training and testing. In the first stage, the unknown electrical parameters of the one diode model (ODM) are accurately identified using the best-so-far ABC algorithm. Then, based on these parameters the PV array is simulated and experimentally validated by using a PSIM™/Matlab™ co-simulation. Finally, efficient fault detection and diagnosis procedure based on PNN classifier is implemented. Four operating cases were tested in a grid connected PV system of 9.54 kWp: Healthy system, three modules short-circuited in one string, ten modules short-circuited in one string, and a string disconnected from the array. Moreover, the PNN method was compared, under real operating conditions, with the feed forward back-propagation Artificial Neural Network (ANN) classifiers method, for noiseless and noisy data to evaluate the suggested method’s accuracy and test its aptitude to support noisy data. The obtained results have demonstrated the high efficiency of the proposed method to detect and diagnose DC side anomalies for both noiseless and noisy data cases. |
dc.format.extent | 18 p. |
dc.language.iso | eng |
dc.rights | Attribution-NonCommercial-NoDerivs 3.0 Spain |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/es/ |
dc.subject | Àrees temàtiques de la UPC::Energies::Energia solar fotovoltaica |
dc.subject.lcsh | Neural networks (Computer science) |
dc.subject.other | Photovoltaic |
dc.subject.other | Fault detection |
dc.subject.other | Diagnosis |
dc.subject.other | Probabilistic neural network |
dc.subject.other | Artificial neural network |
dc.subject.other | Best-so-far ABC |
dc.subject.other | Maximum power point |
dc.title | An enhanced machine learning based approach for failures detection and diagnosis of PV systems |
dc.type | Article |
dc.subject.lemac | Xarxes neuronals (Informàtica) |
dc.contributor.group | Universitat Politècnica de Catalunya. MNT - Grup de Recerca en Micro i Nanotecnologies |
dc.identifier.doi | 10.1016/j.enconman.2017.09.019 |
dc.description.peerreviewed | Peer Reviewed |
dc.relation.publisherversion | http://www.sciencedirect.com/science/journal/01968904/151/supp/C?sdc=1 |
dc.rights.access | Open Access |
local.identifier.drac | 21543419 |
dc.description.version | Postprint (author's final draft) |
local.citation.author | Garoudja, E.; Chouder, A.; Kara, K.; Silvestre, S. |
local.citation.publicationName | Energy Conversion and Management (ECM_4383) |
local.citation.volume | 151 |
local.citation.startingPage | 496 |
local.citation.endingPage | 513 |