Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
59.660 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Grups de recerca
  • MNT - Grup de Recerca en Micro i Nanotecnologies
  • Articles de revista
  • View Item
  •   DSpace Home
  • E-prints
  • Grups de recerca
  • MNT - Grup de Recerca en Micro i Nanotecnologies
  • Articles de revista
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

An enhanced machine learning based approach for failures detection and diagnosis of PV systems

Thumbnail
View/Open
PNN+paper+VFss.pdf (1,329Mb)
Share:
 
 
10.1016/j.enconman.2017.09.019
 
  View Usage Statistics
Cita com:
hdl:2117/107670

Show full item record
Garoudja, Elyes
Chouder, Aissa
Kara, Kamel
Silvestre Bergés, SantiagoMés informacióMés informacióMés informació
Document typeArticle
Defense date2017-09-14
Rights accessOpen Access
Attribution-NonCommercial-NoDerivs 3.0 Spain
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 3.0 Spain
Abstract
In this paper, a novel procedure for fault detection and diagnosis in the direct current (DC) side of PV system, based on probabilistic neural network (PNN) classifier, is proposed. The suggested procedure consists of four main stages: (i) PV module parameters extraction, (ii) PV array simulation and experimental validation (iii) elaboration of a relevant database of both healthy and faulty operations, and (iv) network construction, training and testing. In the first stage, the unknown electrical parameters of the one diode model (ODM) are accurately identified using the best-so-far ABC algorithm. Then, based on these parameters the PV array is simulated and experimentally validated by using a PSIM™/Matlab™ co-simulation. Finally, efficient fault detection and diagnosis procedure based on PNN classifier is implemented. Four operating cases were tested in a grid connected PV system of 9.54 kWp: Healthy system, three modules short-circuited in one string, ten modules short-circuited in one string, and a string disconnected from the array. Moreover, the PNN method was compared, under real operating conditions, with the feed forward back-propagation Artificial Neural Network (ANN) classifiers method, for noiseless and noisy data to evaluate the suggested method’s accuracy and test its aptitude to support noisy data. The obtained results have demonstrated the high efficiency of the proposed method to detect and diagnose DC side anomalies for both noiseless and noisy data cases.
CitationGaroudja, E., Chouder, A., Kara, K., Silvestre, S. An enhanced machine learning based approach for failures detection and diagnosis of PV systems. "Energy Conversion and Management (ECM_4383)", 14 Setembre 2017, vol. 151, p. 496-513. 
URIhttp://hdl.handle.net/2117/107670
DOI10.1016/j.enconman.2017.09.019
Publisher versionhttp://www.sciencedirect.com/science/journal/01968904/151/supp/C?sdc=1
Collections
  • MNT - Grup de Recerca en Micro i Nanotecnologies - Articles de revista [346]
  • Departament d'Enginyeria Electrònica - Articles de revista [1.603]
Share:
 
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
PNN+paper+VFss.pdf1,329MbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina