Show simple item record

dc.contributor.authorEscaler Puigoriol, Francesc Xavier
dc.contributor.authorCasas, Joan
dc.contributor.authorColldelram, Carles
dc.contributor.authorQuispe, Marcos
dc.contributor.authorPrieto Moline, María Montserrat
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Mecànica de Fluids
dc.date.accessioned2017-09-07T07:59:28Z
dc.date.available2017-09-07T07:59:28Z
dc.date.issued2016
dc.identifier.citationEscaler, X., Casas, J., Colldelram, C., Quispe, M., Prieto, M. Numerical simulation of the alba synchrotron light source cooling system response for failure prevention. A: Mechanical Engineering Design of Synchrotron Radiation Equipment and Instrumentation. "MEDSI 2016: Mechanical Engineering Design of Synchrotron Radiation Equipment and Instrumentation, COSMOCAIXA Science Museum, Barcelona, Spain, September 11-16, 2016". Barcelona: 2016, p. 162-164.
dc.identifier.isbn978-3-95450-188-5
dc.identifier.urihttp://hdl.handle.net/2117/107483
dc.description.abstractThe ALBA Synchrotron Light Source cooling system is designed with a common return pipe that interconnects the four consumption rings. Such configuration is believed to compromise its optimal operation. To understand its thermo-fluid dynamic behaviour, a detailed 1D model has been built comprising all the components such as the pipes, fittings, bends, valves, pumping stations, heat exchangers and so on, and the various regulation mechanisms. Preliminarily, the model results in steady state operating conditions have been compared with experimental measurements and the maximum deviations have been found below 13%. Then, a series of transient numerical simulations have been carried out to determine the system response. Specifically, effects of the blockage and leakage of a consumption line as well as the increase and decrease of heat duty for the tunnel rings have been investigated. As a result, the stability of the system has been evaluated and the operational limits have been estimated in front of hydraulic and thermal load variations. Moreover, particular behaviours have been identified which can be used to design monitoring and control strategies to prevent unexpected failures.
dc.format.extent3 p.
dc.language.isoeng
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Spain
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Física
dc.subjectÀrees temàtiques de la UPC::Enginyeria elèctrica
dc.subject.lcshSynchrotrons
dc.subject.lcshParticle accelerators
dc.titleNumerical simulation of the alba synchrotron light source cooling system response for failure prevention
dc.typeConference lecture
dc.subject.lemacSincrotrons
dc.subject.lemacAcceleradors de partícules
dc.contributor.groupUniversitat Politècnica de Catalunya. CDIF - Centre de Diagnòstic Industrial i Fluidodinàmica
dc.relation.publisherversionhttp://accelconf.web.cern.ch/AccelConf/medsi2016/papers/tupe05.pdf
dc.rights.accessOpen Access
local.identifier.drac19594001
dc.description.versionPostprint (published version)
local.citation.authorEscaler, X.; Casas, J.; Colldelram, C.; Quispe, M.; Prieto, M.
local.citation.contributorMechanical Engineering Design of Synchrotron Radiation Equipment and Instrumentation
local.citation.pubplaceBarcelona
local.citation.publicationNameMEDSI 2016: Mechanical Engineering Design of Synchrotron Radiation Equipment and Instrumentation, COSMOCAIXA Science Museum, Barcelona, Spain, September 11-16, 2016
local.citation.startingPage162
local.citation.endingPage164


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution-NonCommercial-NoDerivs 3.0 Spain
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 3.0 Spain