UPCommons està en procés de migració del dia 10 fins al 14 Juliol. L’autentificació està deshabilitada per evitar canvis durant aquesta migració.
Enhanced multiclass SVM with thresholding fusion for speech-based emotion classification

View/Open
Cita com:
hdl:2117/106788
Document typeArticle
Defense date2017-03-01
Rights accessOpen Access
All rights reserved. This work is protected by the corresponding intellectual and industrial
property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public
communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
As an essential approach to understanding human interactions, emotion classification is a vital component of behavioral studies as well as being important in the design of context-aware systems. Recent studies have shown that speech contains rich information about emotion, and numerous speech-based emotion classification methods have been proposed. However, the classification performance is still short of what is desired for the algorithms to be used in real systems. We present an emotion classification system using several one-against-all support vector machines with a thresholding fusion mechanism to combine the individual outputs, which provides the functionality to effectively increase the emotion classification accuracy at the expense of rejecting some samples as unclassified. Results show that the proposed system outperforms three state-of-the-art methods and that the thresholding fusion mechanism can effectively improve the emotion classification, which is important for applications that require very high accuracy but do not require that all samples be classified. We evaluate the system performance for several challenging scenarios including speaker-independent tests, tests on noisy speech signals, and tests using non-professional acted recordings, in order to demonstrate the performance of the system and the effectiveness of the thresholding fusion mechanism in real scenarios.
CitationYang, N., Yuan, J., Zhou, Y., Demirkol, I., Duan, Z., Heinzelman, W., Sturge-Apple, M. Enhanced multiclass SVM with thresholding fusion for speech-based emotion classification. "International journal of speech technology", 1 Març 2017, vol. 20, núm. 1, p. 27-41.
ISSN1381-2416
Publisher versionhttps://link.springer.com/article/10.1007/s10772-016-9364-2
Files | Description | Size | Format | View |
---|---|---|---|---|
all_withauthors.pdf | 667,7Kb | View/Open |