Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

58.848 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Departaments
  • Departament d'Arquitectura de Computadors
  • Articles de revista
  • View Item
  •   DSpace Home
  • E-prints
  • Departaments
  • Departament d'Arquitectura de Computadors
  • Articles de revista
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Distributing data analytics for efficient multiple traffic anomalies detection

Thumbnail
View/Open
[COMCOM-rev1]+Anomalias.pdf (681,7Kb)
Share:
 
 
10.1016/j.comcom.2017.03.008
 
  View Usage Statistics
Cita com:
hdl:2117/106657

Show full item record
Pérez Vela, AlbaMés informació
Ruiz Ramírez, MarcMés informacióMés informacióMés informació
Velasco Esteban, Luis DomingoMés informacióMés informacióMés informació
Document typeArticle
Defense date2017-03-22
Rights accessOpen Access
Attribution-NonCommercial-NoDerivs 3.0 Spain
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 3.0 Spain
Abstract
Traffic anomalies can create network congestion, so its prompt and accurate detection would allow network operators to make decisions to guarantee the network performance avoiding services to experience any perturbation. In this paper, we focus on origin–destination (OD) traffic anomalies; to efficiently detect those, we study two different anomaly detection methods based on data analytics and combine them with three monitoring strategies. In view of the short monitoring period needed to reduce anomaly detection, which entails large amount of monitoring data to be collected and analyzed in a centralized repository, we propose bringing data analytics to the network nodes to efficiently detect traffic anomalies, while keeping traffic estimation centralized. Once an OD traffic anomaly is detected, a network reconfiguration can be triggered to adapt the network to the new traffic conditions. However, an external event might cause multiple related traffic anomalies. In the case of triggering a network reconfiguration just after one traffic anomaly is detected, some Key Performance Indicators (KPI) such as the number of network reconfigurations and the total reconfiguration time would be unnecessarily high. In light of that, we propose the Anomaly and Network Reconfiguration (ALCOR) method to anticipate whether other ODs are anomalous after detecting one anomalous OD pair. Exhaustive simulation results on a realistic network scenario show that the monitoring period should be as low as possible (e.g., 1 min) to keep anomaly detection times low, which clearly motivates to place traffic anomaly detection function in the network nodes. In the case of multiple anomalies, results show that ALCOR can significantly improve KPIs such as the number of network reconfigurations, total reconfiguration time, as well as traffic losses.
CitationP. Vela, Alba, Ruiz, M., Velasco, L. Distributing data analytics for efficient multiple traffic anomalies detection. "Computer communications", 22 Març 2017, vol. 107, p. 1-12. 
URIhttp://hdl.handle.net/2117/106657
DOI10.1016/j.comcom.2017.03.008
ISSN0140-3664
Publisher versionhttp://www.sciencedirect.com/science/article/pii/S0140366416303218
Collections
  • Departament d'Arquitectura de Computadors - Articles de revista [957]
  • GCO - Grup de Comunicacions Òptiques - Articles de revista [218]
Share:
 
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
[COMCOM-rev1]+Anomalias.pdf681,7KbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Inici de la pàgina