Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
68.866 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Grups de recerca
  • COMPTHE - Combinatòria i Teoria Discreta del Potencial pel control de paràmetres en xarxes
  • Articles de revista
  • View Item
  •   DSpace Home
  • E-prints
  • Grups de recerca
  • COMPTHE - Combinatòria i Teoria Discreta del Potencial pel control de paràmetres en xarxes
  • Articles de revista
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Explicit inverse of a tridiagonal (p,r)-Toeplitz matrix

Thumbnail
View/Open
Explicit inverse of a tridiagonal.pdf (463,3Kb)
 
10.1016/j.laa.2017.06.010
 
  View UPCommons Usage Statistics
  LA Referencia / Recolecta stats
Includes usage data since 2022
Cita com:
hdl:2117/106362

Show full item record
Encinas Bachiller, Andrés MarcosMés informacióMés informacióMés informació
Jiménez Jiménez, María JoséMés informacióMés informacióMés informació
Document typeArticle
Defense date2018-04-01
PublisherElsevier
Rights accessOpen Access
Attribution-NonCommercial-NoDerivs 3.0 Spain
This work is protected by the corresponding intellectual and industrial property rights. Except where otherwise noted, its contents are licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 3.0 Spain
ProjectLA RESISTENCIA EFECTIVA COMO HERRAMIENTA PARA EL ESTUDIO DEL PROBLEMA INVERSO DE LAS CONDUCTANCIAS Y EL ANALISIS DE LAS PERTURBACIONES DE REDES (MINECO-MTM2014-60450-R)
Abstract
We have named tridiagonal (p,r)–Toeplitz matrix to those tridiagonal matrices in which each diagonal is a quasi–periodic sequence, d(p+j)=rd(j), so with period p¿N but multiplied by a real number r. We present here the necessary and sufficient conditions for the invertibility of this kind of matrices and explicitly compute their inverse. The techniques we use are related with the solution of boundary value problems associated to second order linear difference equations. These boundary value problems can be expressed throughout the discrete Schrödinger operator and their solutions can be computed using recent advances in the study of linear difference equations with quasi–periodic coefficients. The conditions that ensure the uniqueness solution of the boundary value problem lead us to the invertibility conditions for the matrix, whereas the solutions of the boundary value problems provides the entries of the inverse matrix.
CitationEncinas, A., Jiménez, M.J. Explicit inverse of a tridiagonal (p,r)-Toeplitz matrix. "Linear algebra and its applications", Vol. 542, 01 Abril, 2018, p. 402-421. 
URIhttp://hdl.handle.net/2117/106362
DOI10.1016/j.laa.2017.06.010
ISSN0024-3795
Publisher versionhttp://www.sciencedirect.com/science/article/pii/S0024379517303737
Collections
  • COMPTHE - Combinatòria i Teoria Discreta del Potencial pel control de paràmetres en xarxes - Articles de revista [29]
  • Departament de Matemàtiques - Articles de revista [3.456]
  View UPCommons Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
Explicit inverse of a tridiagonal.pdf463,3KbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Metadata under:Metadata under CC0
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina