Explicit inverse of a tridiagonal (p,r)-Toeplitz matrix
Cita com:
hdl:2117/106362
Document typeArticle
Defense date2018-04-01
PublisherElsevier
Rights accessOpen Access
Except where otherwise noted, content on this work
is licensed under a Creative Commons license
:
Attribution-NonCommercial-NoDerivs 3.0 Spain
Abstract
We have named tridiagonal (p,r)–Toeplitz matrix to those tridiagonal matrices in which each diagonal is a quasi–periodic sequence, d(p+j)=rd(j), so with period p¿N but multiplied by a real number r. We present here the necessary and sufficient conditions for the invertibility of this kind of matrices and explicitly compute their inverse. The techniques we use are related with the solution of boundary value problems associated to second order linear difference equations. These boundary value problems can be expressed throughout the discrete Schrödinger operator and their solutions can be computed using recent advances in the study of linear difference equations with quasi–periodic coefficients. The conditions that ensure the uniqueness solution of the boundary value problem lead us to the invertibility conditions for the matrix, whereas the solutions of the boundary value problems provides the entries of the inverse matrix.
CitationEncinas, A., Jiménez, M.J. Explicit inverse of a tridiagonal (p,r)-Toeplitz matrix. "Linear algebra and its applications", Vol. 542, 01 Abril, 2018, p. 402-421.
ISSN0024-3795
Publisher versionhttp://www.sciencedirect.com/science/article/pii/S0024379517303737
Files | Description | Size | Format | View |
---|---|---|---|---|
Explicit inverse of a tridiagonal.pdf | 463,3Kb | View/Open |