Show simple item record

dc.contributor.authorPozo Montero, Francesc
dc.contributor.authorTibaduiza Burgos, Diego Alexander
dc.contributor.authorAnaya Vejar, Maribel
dc.contributor.authorVitola Oyaga, Jaime
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Matemàtiques
dc.date.accessioned2017-06-23T07:00:52Z
dc.date.issued2017
dc.identifier.citationPozo, F., Tibaduiza, D.A., Anaya, M., Vitola, J. A machine learning methodology for structural damage classification in structural health monitoring. A: ECCOMAS Thematic Conference Smart Structures and Materials. "SMART 2017: ECCOMAS Thematic Conference on Smart Structures and Materials: Madrid, Espanya: June 5-8, 2017: proceedings book". Madrid: 2017, p. 698-708.
dc.identifier.urihttp://hdl.handle.net/2117/105747
dc.description.abstractOne of the goals of structural health monitoring (SHM) applications is to determine the presence and the severity of a damage. In some cases, this is an element to forecast the behaviour and take decisions to allocate maintenance or replace the structure or the piece. An appropriate decision can reduce the risk of an accident, making more efficient the management of maintenance tasks and reducing the costs while improving the performance of a system. In this way, the development of a good SHM system is a need. Through the use of: (i) advanced methodologies of digital signal processing; (ii) the acquisition of information from a set of piezoelectric sensors appropriately placed in the surface of a structure; and (iii) the use of techniques such as principal component analysis (PCA) [1, 2, 3] and machine learning, it is possible to generate a solution that meets the necessity about the knowledge of the structural state. This work presents a methodology which allow to determine the presence of a structural damage and its classification in spite of temperature changes. The methodology is tested with a composite plate instrumented with a PZT sensor network and some added masses as damages. The whole system is validated to different temperatures.
dc.format.extent11 p.
dc.language.isoeng
dc.subjectÀrees temàtiques de la UPC::Enginyeria elèctrica
dc.subject.lcshMachine learning
dc.subject.lcshPrincipal components analysis
dc.titleA machine learning methodology for structural damage classification in structural health monitoring
dc.typeConference report
dc.subject.lemacAprenentatge automàtic
dc.subject.lemacAnàlisi de components principals
dc.contributor.groupUniversitat Politècnica de Catalunya. CoDAlab - Control, Modelització, Identificació i Aplicacions
dc.rights.accessRestricted access - publisher's policy
local.identifier.drac21080445
dc.description.versionPostprint (published version)
dc.date.lift10000-01-01
local.citation.authorPozo, F.; Tibaduiza, D.A.; Anaya, M.; Vitola, J.
local.citation.contributorECCOMAS Thematic Conference Smart Structures and Materials
local.citation.pubplaceMadrid
local.citation.publicationNameSMART 2017: ECCOMAS Thematic Conference on Smart Structures and Materials: Madrid, Espanya: June 5-8, 2017: proceedings book
local.citation.startingPage698
local.citation.endingPage708


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record