Extraordinary linear dynamic range in laser-defined functionalized graphene photodetectors
dc.contributor.author | Sanctis, Adolfo De |
dc.contributor.author | Jones, Gareth F. |
dc.contributor.author | Wehenkel, Dominique J. |
dc.contributor.author | Bezares, Francisco |
dc.contributor.author | Koppens, Frank H. L. |
dc.contributor.author | Craciun, Monica F. |
dc.contributor.author | Russo, Saverio |
dc.contributor.other | Universitat Politècnica de Catalunya. Institut de Ciències Fotòniques |
dc.date.accessioned | 2017-06-07T14:54:07Z |
dc.date.available | 2017-06-07T14:54:07Z |
dc.date.issued | 2017-05-26 |
dc.identifier.citation | Sanctis, A. D. [et al.]. Extraordinary linear dynamic range in laser-defined functionalized graphene photodetectors. "Scientific Advances", 26 Maig 2017, vol. 3, núm. 5. |
dc.identifier.issn | 2375-2548 |
dc.identifier.uri | http://hdl.handle.net/2117/105212 |
dc.description.abstract | Graphene-based photodetectors have demonstrated mechanical flexibility, large operating bandwidth, and broadband spectral response. However, their linear dynamic range (LDR) is limited by graphene’s intrinsic hot-carrier dynamics, which causes deviation from a linear photoresponse at low incident powers. At the same time, multiplication of hot carriers causes the photoactive region to be smeared over distances of a few micrometers, limiting the use of graphene in high-resolution applications. We present a novel method for engineering photoactive junctions in FeCl3-intercalated graphene using laser irradiation. Photocurrent measured at these planar junctions shows an extraordinary linear response with an LDR value at least 4500 times larger than that of other graphene devices (44 dB) while maintaining high stability against environmental contamination without the need for encapsulation. The observed photoresponse is purely photovoltaic, demonstrating complete quenching of hot-carrier effects. These results pave the way toward the design of ultrathin photodetectors with unprecedented LDR for high-definition imaging and sensing. |
dc.language.iso | eng |
dc.publisher | Science |
dc.rights | Attribution-NonCommercial-NoDerivs 3.0 Spain |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/es/ |
dc.subject | Àrees temàtiques de la UPC::Física |
dc.subject.lcsh | Graphene |
dc.subject.other | grafè |
dc.title | Extraordinary linear dynamic range in laser-defined functionalized graphene photodetectors |
dc.type | Article |
dc.subject.lemac | Grafè |
dc.description.peerreviewed | Peer Reviewed |
dc.relation.publisherversion | http://advances.sciencemag.org/content/3/5/e1602617/tab-pdf |
dc.rights.access | Open Access |
dc.description.version | Postprint (published version) |
dc.relation.projectid | info:eu-repo/grantAgreement/EC/FP7/613024/EU/GRAPHENE-BASED SINGLE-PHOTON NONLINEAR OPTICAL DEVICES/GRASP |
local.citation.publicationName | Scientific Advances |
local.citation.volume | 3 |
local.citation.number | 5 |
local.citation.startingPage | e1602617 |
dc.identifier.pmid | 28560334 |
Files in this item
This item appears in the following Collection(s)
-
Articles de revista [13]
Except where otherwise noted, content on this work
is licensed under a Creative Commons license
:
Attribution-NonCommercial-NoDerivs 3.0 Spain