Performance evaluation and scaling of a multiprocessor architecture emulating complex SNN algorithms
View/Open
Performance evaluation and scaling of a multiprocessor architecture ....pdf (713,8Kb) (Restricted access)
Request copy
Què és aquest botó?
Aquest botó permet demanar una còpia d'un document restringit a l'autor. Es mostra quan:
- Disposem del correu electrònic de l'autor
- El document té una mida inferior a 20 Mb
- Es tracta d'un document d'accés restringit per decisió de l'autor o d'un document d'accés restringit per política de l'editorial
Document typeArticle
Defense date2010-09
PublisherSpringer Verlag
Rights accessRestricted access - publisher's policy
All rights reserved. This work is protected by the corresponding intellectual and industrial
property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public
communication or transformation of this work are prohibited without permission of the copyright holder
Abstract
The performance analysis of an efficient multiprocessor architecture that allows accelerating the emulation of large-scale Spiking Neural Networks (SNNs) is reported. After describing the architecture and the complex SNN algorithm mapping, the performance study demonstrates that the system can emulate up to 10,000 300-synapse neurons in real time at 64 MHz with conventional FPGAs. Important improvements can be achieved by using advanced technology and increased clock rate or by means of simple architecture modifications.
The architecture is flexible enough to be efficiently applied to any SNN model in general.
CitationSanchez, G.; Madrenas, J.; Moreno, J. Performance evaluation and scaling of a multiprocessor architecture emulating complex SNN algorithms. "Lecture Notes in Computer Science", Setembre 2010, vol. Special ICES 2010, núm. 6274, p. 145-156.
Files | Description | Size | Format | View |
---|---|---|---|---|
Performance eva ... essor architecture ....pdf![]() | 713,8Kb | Restricted access |