Show simple item record

dc.contributor.authorMiguel, Jorge
dc.contributor.authorCaballé Llobet, Santiago
dc.contributor.authorXhafa Xhafa, Fatos
dc.contributor.authorPrieto, Josep
dc.contributor.authorBarolli, Leonard
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Ciències de la Computació
dc.date.accessioned2017-06-05T13:37:24Z
dc.date.available2017-06-05T13:37:24Z
dc.date.issued2014
dc.identifier.citationMiguel, J., Caballé , Santi, Xhafa, F., Prieto, J., Barolli, L. Predicting trustworthiness behavior to enhance security in on-line assessment. A: International Conference on Intelligent Networking and Collaborative Systems. "2014 International Conference on Intelligent Networking and Collaborative Systems: IEEE INCoS 2014: 10–12 September 2014, University of Salerno, Salerno, Italy: proceedings". Salerno: Institute of Electrical and Electronics Engineers (IEEE), 2014, p. 342-349.
dc.identifier.isbn978-1-4799-6386-7
dc.identifier.urihttp://hdl.handle.net/2117/105130
dc.description(c) 2014 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.
dc.description.abstractOver the last decade, information security has been considered a key issue in e-Learning design. Although security requirements can be met with advanced technological approaches and these solutions offer feasible methods in many e-Learning scenarios, on-line assessment activities usually show specific issues that cannot be solved with technology alone. In addition, security vulnerabilities in on-line assessment impede the development of an overall model devoted to manage secure on-line assessment. In this paper, we propose an innovative approach to enhance technological security solutions with trustworthiness. To this end, we endow previous trustworthiness models with prediction features by composing trustworthiness modeling and assessment, normalization methods, history sequences, and neural network-based approaches. In order to validate our approach, we present a peer-to-peer on-line assessment model carried out in a real online course.
dc.format.extent8 p.
dc.language.isoeng
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)
dc.subjectÀrees temàtiques de la UPC::Ensenyament i aprenentatge::TIC's aplicades a l'educació::Ensenyament virtual (eLearning)
dc.subjectÀrees temàtiques de la UPC::Informàtica::Seguretat informàtica
dc.subject.lcshComputer-assisted instruction
dc.subject.lcshComputer security
dc.subject.otherCollaborative filtering
dc.subject.otherCollaborative learning
dc.subject.otherE-assessment
dc.subject.otherNeural network
dc.subject.otherSecurity
dc.subject.otherTrustworthiness
dc.titlePredicting trustworthiness behavior to enhance security in on-line assessment
dc.typeConference report
dc.subject.lemacEnsenyament virtual
dc.subject.lemacSeguretat informàtica
dc.identifier.doi10.1109/INCoS.2014.19
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttp://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7057112
dc.rights.accessOpen Access
local.identifier.drac17839638
dc.description.versionPostprint (author's final draft)
local.citation.authorMiguel, J.; Caballé, Santi; Xhafa, F.; Prieto, J.; Barolli, L.
local.citation.contributorInternational Conference on Intelligent Networking and Collaborative Systems
local.citation.pubplaceSalerno
local.citation.publicationName2014 International Conference on Intelligent Networking and Collaborative Systems: IEEE INCoS 2014: 10–12 September 2014, University of Salerno, Salerno, Italy: proceedings
local.citation.startingPage342
local.citation.endingPage349


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder