Show simple item record

dc.contributor.authorConti, Monica
dc.contributor.authorGatti, Stefania
dc.contributor.authorMiranville, Alain
dc.contributor.authorQuintanilla de Latorre, Ramón
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Matemàtiques
dc.date.accessioned2017-05-29T11:37:49Z
dc.date.available2018-01-20T01:30:46Z
dc.date.issued2017-06
dc.identifier.citationConti, M., Gatti, S., Miranville, A., Quintanilla, R. On a Caginalp phase-field system with two temperatures and memory. "Milan Journal of Mathematics", Juny 2017, vol. 85, núm. 1, p. 1-27.
dc.identifier.issn1424-9286
dc.identifier.urihttp://hdl.handle.net/2117/104992
dc.descriptionThe final publication is available at Springer via https://doi.org/10.1007/s00032-017-0263-z
dc.description.abstractThe Caginalp phase-field system has been proposed in [4] as a simple mathematical model for phase transition phenomena. In this paper, we are concerned with a generalization of this system based on the Gurtin-Pipkin law with two temperatures for heat conduction with memory, apt to describe transition phenomena in nonsimple materials. The model consists of a parabolic equation governing the order parameter which is linearly coupled with a nonclassical integrodifferential equation ruling the evolution of the thermodynamic temperature of the material. Our aim is to construct a robust family of exponential attractors for the associated semigroup, showing the stability of the system with respect to the collapse of the memory kernel. We also study the spatial behavior of the solutions in a semi-infinite cylinder, when such solutions exist.
dc.format.extent27 p.
dc.language.isoeng
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Matemàtica aplicada a les ciències
dc.subject.lcshThermoelasticity
dc.subject.otherCaginalp system
dc.subject.otherTwo temperatures
dc.subject.otherGurtin-Pipkin law
dc.subject.otherDissipativity
dc.subject.otherExponential attractor stability 
dc.titleOn a Caginalp phase-field system with two temperatures and memory
dc.typeArticle
dc.subject.lemacTermoelasticitat
dc.subject.lemacEquacions diferencials parcials
dc.contributor.groupUniversitat Politècnica de Catalunya. GRAA - Grup de Recerca en Anàlisi Aplicada
dc.identifier.doi10.1007/s00032-017-0263-z
dc.description.peerreviewedPeer Reviewed
dc.subject.amsClassificació AMS::35 Partial differential equations::35B Qualitative properties of solutions
dc.subject.amsClassificació AMS::35 Partial differential equations::35K Parabolic equations and systems
dc.subject.amsClassificació AMS::35 Partial differential equations::35L Partial differential equations of hyperbolic type
dc.subject.amsClassificació AMS::80 Classical thermodynamics, heat transfer::80A Thermodynamics and heat transfer
dc.rights.accessOpen Access
local.identifier.drac20802536
dc.description.versionPostprint (published version)
dc.relation.projectidinfo:eu-repo/grantAgreement/MINECO//MTM2013-42004-P/ES/ANALISIS MATEMATICO DE LAS ECUACIONES EN DERIVADAS PARCIALES DE LA TERMOMECANICA/
dc.relation.projectidinfo:eu-repo/grantAgreement/MINECO/1PE/MTM2016-74934-P
local.citation.authorConti, M.; Gatti, S.; Miranville, A.; Quintanilla, R.
local.citation.publicationNameMilan Journal of Mathematics
local.citation.volume85
local.citation.number1
local.citation.startingPage1
local.citation.endingPage27


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder