Show simple item record

dc.contributor.authorAhmad, Fayyaz
dc.contributor.authorTohidi, Emran
dc.contributor.authorCarrasco, Juan A.
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Enginyeria Electrònica
dc.date.accessioned2017-05-24T10:09:04Z
dc.date.available2017-05-24T10:09:04Z
dc.date.issued2016-03-01
dc.identifier.citationAhmad, F., Tohidi, E., Carrasco, J. A Parameterized multi-step Newton method for solving systems of nonlinear equations. "Numerical algorithms", 1 Març 2016, vol. 71, núm. 3, p. 631-653.
dc.identifier.issn1017-1398
dc.identifier.urihttp://hdl.handle.net/2117/104811
dc.description.abstractWe construct a novel multi-step iterative method for solving systems of nonlinear equations by introducing a parameter. to generalize the multi-step Newton method while keeping its order of convergence and computational cost. By an appropriate selection of theta, the new method can both have faster convergence and have larger radius of convergence. The new iterative method only requires one Jacobian inversion per iteration, and therefore, can be efficiently implemented using Krylov subspace methods. The new method can be used to solve nonlinear systems of partial differential equations, such as complex generalized Zakharov systems of partial differential equations, by transforming them into systems of nonlinear equations by discretizing approaches in both spatial and temporal independent variables such as, for instance, the Chebyshev pseudo-spectral discretizing method. Quite extensive tests show that the new method can have significantly faster convergence and significantly larger radius of convergence than the multi-step Newton method.
dc.format.extent23 p.
dc.language.isoeng
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Spain
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Enginyeria electrònica
dc.subject.lcshDifferential equations, Partial
dc.subject.otherMulti-step iterative methods
dc.subject.otherMulti-step Newton method
dc.subject.otherSystems of nonlinear equations
dc.subject.otherPartial differential equations
dc.subject.otherDiscretization methods for partial differential equations
dc.subject.othergeneralized zakharov equation
dc.subject.otherdifferential-equations
dc.subject.othernumerical-solution
dc.subject.otherspectral method
dc.subject.otherefficient
dc.subject.otherapproximation
dc.titleA Parameterized multi-step Newton method for solving systems of nonlinear equations
dc.typeArticle
dc.subject.lemacEquacions diferencials
dc.contributor.groupUniversitat Politècnica de Catalunya. GAA - Grup d'Astronomia i Astrofísica
dc.identifier.doi10.1007/s11075-015-0013-7
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttp://link.springer.com/article/10.1007%2Fs11075-015-0013-7
dc.rights.accessOpen Access
local.identifier.drac17839386
dc.description.versionPostprint (author's final draft)
dc.relation.projectidinfo:eu-repo/grantAgreement/MICINN//AYA2010-15685/ES/ULTIMOS ESTADIOS DE LA EVOLUCION ESTELAR EN SISTEMAS BINARIOS: NOVAS CLASICAS Y RECURRENTES, SUPERNOVAS, ERUPCIONES DE RAYOS X Y COALESCENCIAS/
local.citation.authorAhmad, F.; Tohidi, E.; Carrasco, J.
local.citation.publicationNameNumerical algorithms
local.citation.volume71
local.citation.number3
local.citation.startingPage631
local.citation.endingPage653


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record