dc.contributor.author | Ahmad, Fayyaz |
dc.contributor.author | Tohidi, Emran |
dc.contributor.author | Carrasco, Juan A. |
dc.contributor.other | Universitat Politècnica de Catalunya. Departament d'Enginyeria Electrònica |
dc.date.accessioned | 2017-05-24T10:09:04Z |
dc.date.available | 2017-05-24T10:09:04Z |
dc.date.issued | 2016-03-01 |
dc.identifier.citation | Ahmad, F., Tohidi, E., Carrasco, J. A Parameterized multi-step Newton method for solving systems of nonlinear equations. "Numerical algorithms", 1 Març 2016, vol. 71, núm. 3, p. 631-653. |
dc.identifier.issn | 1017-1398 |
dc.identifier.uri | http://hdl.handle.net/2117/104811 |
dc.description.abstract | We construct a novel multi-step iterative method for solving systems of nonlinear equations by introducing a parameter. to generalize the multi-step Newton method while keeping its order of convergence and computational cost. By an appropriate selection of theta, the new method can both have faster convergence and have larger radius of convergence. The new iterative method only requires one Jacobian inversion per iteration, and therefore, can be efficiently implemented using Krylov subspace methods. The new method can be used to solve nonlinear systems of partial differential equations, such as complex generalized Zakharov systems of partial differential equations, by transforming them into systems of nonlinear equations by discretizing approaches in both spatial and temporal independent variables such as, for instance, the Chebyshev pseudo-spectral discretizing method. Quite extensive tests show that the new method can have significantly faster convergence and significantly larger radius of convergence than the multi-step Newton method. |
dc.format.extent | 23 p. |
dc.language.iso | eng |
dc.rights | Attribution-NonCommercial-NoDerivs 3.0 Spain |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/es/ |
dc.subject | Àrees temàtiques de la UPC::Enginyeria electrònica |
dc.subject.lcsh | Differential equations, Partial |
dc.subject.other | Multi-step iterative methods |
dc.subject.other | Multi-step Newton method |
dc.subject.other | Systems of nonlinear equations |
dc.subject.other | Partial differential equations |
dc.subject.other | Discretization methods for partial differential equations |
dc.subject.other | generalized zakharov equation |
dc.subject.other | differential-equations |
dc.subject.other | numerical-solution |
dc.subject.other | spectral method |
dc.subject.other | efficient |
dc.subject.other | approximation |
dc.title | A Parameterized multi-step Newton method for solving systems of nonlinear equations |
dc.type | Article |
dc.subject.lemac | Equacions diferencials |
dc.contributor.group | Universitat Politècnica de Catalunya. GAA - Grup d'Astronomia i Astrofísica |
dc.identifier.doi | 10.1007/s11075-015-0013-7 |
dc.description.peerreviewed | Peer Reviewed |
dc.relation.publisherversion | http://link.springer.com/article/10.1007%2Fs11075-015-0013-7 |
dc.rights.access | Open Access |
local.identifier.drac | 17839386 |
dc.description.version | Postprint (author's final draft) |
dc.relation.projectid | info:eu-repo/grantAgreement/MICINN//AYA2010-15685/ES/ULTIMOS ESTADIOS DE LA EVOLUCION ESTELAR EN SISTEMAS BINARIOS: NOVAS CLASICAS Y RECURRENTES, SUPERNOVAS, ERUPCIONES DE RAYOS X Y COALESCENCIAS/ |
local.citation.author | Ahmad, F.; Tohidi, E.; Carrasco, J. |
local.citation.publicationName | Numerical algorithms |
local.citation.volume | 71 |
local.citation.number | 3 |
local.citation.startingPage | 631 |
local.citation.endingPage | 653 |