Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
61.603 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Grups de recerca
  • GAA - Grup d'Astronomia i Astrofísica
  • Articles de revista
  • View Item
  •   DSpace Home
  • E-prints
  • Grups de recerca
  • GAA - Grup d'Astronomia i Astrofísica
  • Articles de revista
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Parameterized multi-step Newton method for solving systems of nonlinear equations

Thumbnail
View/Open
NA_16.pdf (481,1Kb)
 
10.1007/s11075-015-0013-7
 
  View Usage Statistics
  LA Referencia / Recolecta stats
Cita com:
hdl:2117/104811

Show full item record
Ahmad, Fayyaz
Tohidi, Emran
Carrasco, Juan A.Més informacióMés informacióMés informació
Document typeArticle
Defense date2016-03-01
Rights accessOpen Access
Attribution-NonCommercial-NoDerivs 3.0 Spain
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 3.0 Spain
ProjectULTIMOS ESTADIOS DE LA EVOLUCION ESTELAR EN SISTEMAS BINARIOS: NOVAS CLASICAS Y RECURRENTES, SUPERNOVAS, ERUPCIONES DE RAYOS X Y COALESCENCIAS (MICINN-AYA2010-15685)
Abstract
We construct a novel multi-step iterative method for solving systems of nonlinear equations by introducing a parameter. to generalize the multi-step Newton method while keeping its order of convergence and computational cost. By an appropriate selection of theta, the new method can both have faster convergence and have larger radius of convergence. The new iterative method only requires one Jacobian inversion per iteration, and therefore, can be efficiently implemented using Krylov subspace methods. The new method can be used to solve nonlinear systems of partial differential equations, such as complex generalized Zakharov systems of partial differential equations, by transforming them into systems of nonlinear equations by discretizing approaches in both spatial and temporal independent variables such as, for instance, the Chebyshev pseudo-spectral discretizing method. Quite extensive tests show that the new method can have significantly faster convergence and significantly larger radius of convergence than the multi-step Newton method.
CitationAhmad, F., Tohidi, E., Carrasco, J. A Parameterized multi-step Newton method for solving systems of nonlinear equations. "Numerical algorithms", 1 Març 2016, vol. 71, núm. 3, p. 631-653. 
URIhttp://hdl.handle.net/2117/104811
DOI10.1007/s11075-015-0013-7
ISSN1017-1398
Publisher versionhttp://link.springer.com/article/10.1007%2Fs11075-015-0013-7
Collections
  • GAA - Grup d'Astronomia i Astrofísica - Articles de revista [283]
  • Departament d'Enginyeria Electrònica - Articles de revista [1.658]
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
NA_16.pdf481,1KbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina