Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

57.066 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Grups de recerca
  • MNT - Grup de Recerca en Micro i Nanotecnologies
  • Articles de revista
  • View Item
  •   DSpace Home
  • E-prints
  • Grups de recerca
  • MNT - Grup de Recerca en Micro i Nanotecnologies
  • Articles de revista
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Statistical fault detection in photovoltaic systems

Thumbnail
View/Open
Statistical fault detection in photovoltaic systems.pdf (1,209Mb)
Share:
 
 
10.1016/j.solener.2017.04.043
 
  View Usage Statistics
Cita com:
hdl:2117/104780

Show full item record
Garoudja, Elyes
Harrou, Fouzi
Sun, Ying
Kara, Kamel
Chouder, Aissa
Silvestre Bergés, SantiagoMés informacióMés informacióMés informació
Document typeArticle
Defense date2017-07-01
Rights accessOpen Access
Attribution-NonCommercial-NoDerivs 3.0 Spain
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 3.0 Spain
Abstract
Faults in photovoltaic (PV) systems, which can result in energy loss, system shutdown or even serious safety breaches, are often difficult to avoid. Fault detection in such systems is imperative to improve their reliability, productivity, safety and efficiency. Here, an innovative model-based fault-detection approach for early detection of shading of PV modules and faults on the direct current (DC) side of PV systems is proposed. This approach combines the flexibility, and simplicity of a one-diode model with the extended capacity of an exponentially weighted moving average (EWMA) control chart to detect incipient changes in a PV system. The one-diode model, which is easily calibrated due to its limited calibration parameters, is used to predict the healthy PV array’s maximum power coordinates of current, voltage and power using measured temperatures and irradiances. Residuals, which capture the difference between the measurements and the predictions of the one-diode model, are generated and used as fault indicators. Then, the EWMA monitoring chart is applied on the uncorrelated residuals obtained from the one-diode model to detect and identify the type of fault. Actual data from the grid-connected PV system installed at the Renewable Energy Development Center, Algeria, are used to assess the performance of the proposed approach. Results show that the proposed approach successfully monitors the DC side of PV systems and detects temporary shading.
CitationGaroudja, E., Harrou, F., Sun, Y., Kara, K., Chouder, A., Silvestre, S. Statistical fault detection in photovoltaic systems. "Solar energy", 1 Juliol 2017, vol. 150, p. 485-499. 
URIhttp://hdl.handle.net/2117/104780
DOI10.1016/j.solener.2017.04.043
ISSN0038-092X
Publisher versionhttp://www.sciencedirect.com/science/article/pii/S0038092X17303377
Collections
  • MNT - Grup de Recerca en Micro i Nanotecnologies - Articles de revista [345]
  • Departament d'Enginyeria Electrònica - Articles de revista [1.531]
Share:
 
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
Statistical fau ... n photovoltaic systems.pdf1,209MbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Inici de la pàgina