Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
66.403 UPC academic works
You are here:
View Item 
  •   DSpace Home
  • Treballs acadèmics
  • Facultat de Matemàtiques i Estadística
  • Grau en Matemàtiques (Pla 2009)
  • View Item
  •   DSpace Home
  • Treballs acadèmics
  • Facultat de Matemàtiques i Estadística
  • Grau en Matemàtiques (Pla 2009)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Autonomic urban traffic optimization using data analytics

Thumbnail
View/Open
memoria.pdf (2,272Mb)
  View Usage Statistics
  LA Referencia / Recolecta stats
Cita com:
hdl:2117/104773

Show full item record
Garriga Porqueras, AlbertMés informació
Tutor / directorRuiz Ramírez, MarcMés informacióMés informacióMés informació; Velasco Esteban, Luis DomingoMés informacióMés informacióMés informació
Document typeBachelor thesis
Date2017-05
Rights accessOpen Access
Attribution-NonCommercial-ShareAlike 3.0 Spain
Except where otherwise noted, content on this work is licensed under a Creative Commons license : Attribution-NonCommercial-ShareAlike 3.0 Spain
Abstract
This work focuses on a smart mobility use case where real-time data analytics on traffic measures is used to improve mobility in the event of a perturbation causing congestion in a local urban area. The data monitored is analysed in order to identify patterns that are used to properly reconfigure traffic lights. The monitoring and data analytics infrastructure is based on a hierarchical distributed architecture that allows placing data analytics processes such as machine learning close to the source of data. This distributed data analytics architecture is presented and specified for the targeted use case. Aiming at detecting traffic perturbations, several classifiers are proposed, implemented and trained with stationary traffic data. An optimization method for traffic light phase reconfiguration is proposed. The accuracy of classifiers and traffic optimization are then evaluated in a non-stationary environment where perturbations gradually arise from traffic normality. To this purpose, the open-source traffic simulator SUMO is used.
SubjectsComputer science, Informàtica
DegreeGRAU EN MATEMÀTIQUES (Pla 2009)
URIhttp://hdl.handle.net/2117/104773
Collections
  • Facultat de Matemàtiques i Estadística - Grau en Matemàtiques (Pla 2009) [318]
  View Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
memoria.pdf2,272MbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina