Show simple item record

dc.contributor.authorLagén Morancho, Sandra
dc.contributor.authorAgustín de Dios, Adrián
dc.contributor.authorVidal Manzano, José
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Teoria del Senyal i Comunicacions
dc.identifier.citationLagen, S., Agustin, A., Vidal, J. Joint user scheduling, precoder design, and transmit direction selection in MIMO TDD small cell networks. "IEEE transactions on wireless communications", 1 Abril 2017, vol. 16, núm. 4, p. 2434-2449.
dc.description©2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
dc.description.abstractNew short-length single-direction frame structures are proposed for 5G time division duplex (TDD) systems, where the transmit direction [i.e., either downlink (DL) or uplink (UL)] can be independently chosen at each cell in every frame. Accordingly, high flexibility is provided to match the per-cell DL/UL traffic asymmetries and full exploitation of dynamic TDD is allowed. As a downside, interference management becomes crucial. In this regard, this paper proposes a procedure for dynamic TDD in dense multiple-input multiple-output small cell networks, where the transmit direction selected per small cell (SC) is dynamically optimized together with the user scheduling and transmit precoding. We focus on the maximization of a general utility function that takes into account the DL/UL traffic asymmetries of each user and the interference conditions in the network. Although the problem is non-convex, it is decomposed thanks to the interference-cost concept and then efficiently solved in parallel. Simulation results show gains in DL and UL average rates for different traffic asymmetries and SC/user densities as compared to existing dynamic TDD schemes thanks to the proposed joint optimization. The gains become more significant when there is high interference and limited number of antennas.
dc.format.extent16 p.
dc.subjectÀrees temàtiques de la UPC::Enginyeria de la telecomunicació::Radiocomunicació i exploració electromagnètica
dc.subject.lcshMIMO systems
dc.subject.otherDynamic TDD
dc.subject.otherSmall cell networks
dc.subject.other5G short-length single-direction frame structure
dc.subject.otherUser scheduling
dc.subject.otherPrecoder design
dc.subject.otherPower allocation
dc.subject.otherTransmit direction selection
dc.titleJoint user scheduling, precoder design, and transmit direction selection in MIMO TDD small cell networks
dc.subject.lemacSistemes MIMO
dc.contributor.groupUniversitat Politècnica de Catalunya. SPCOM - Grup de Recerca de Processament del Senyal i Comunicacions
dc.description.peerreviewedPeer Reviewed
dc.rights.accessOpen Access
dc.description.versionPostprint (author's final draft)
local.citation.authorLagen, S.; Agustin, A.; Vidal, J.
local.citation.publicationNameIEEE transactions on wireless communications

Files in this item


This item appears in the following Collection(s)

Show simple item record

All rights reserved. This work is protected by the corresponding intellectual and industrial property rights. Without prejudice to any existing legal exemptions, reproduction, distribution, public communication or transformation of this work are prohibited without permission of the copyright holder