dc.contributor.author | Armero, Carmen |
dc.contributor.author | Forné, Carles |
dc.contributor.author | Rué, Montserrat |
dc.contributor.author | Forte Deltell, Anabel |
dc.contributor.author | Perpiñán Fabuel, Hèctor |
dc.contributor.author | Gómez Melis, Guadalupe |
dc.contributor.author | Bare Mañas, Maris |
dc.contributor.other | Universitat Politècnica de Catalunya. Departament d'Estadística i Investigació Operativa |
dc.date.accessioned | 2017-05-22T06:51:26Z |
dc.date.available | 2017-12-01T01:30:27Z |
dc.date.issued | 2016-12-10 |
dc.identifier.citation | Armero, C., Forné, C., Rué, M., Forte, A., Perpiñán, H., Gomez, G., Bare, M. Bayesian joint ordinal and survival modeling for breast cancer risk assessment. "Statistics in medicine", 10 Desembre 2016, vol. 35, núm. 28, p. 5267-5282. |
dc.identifier.issn | 0277-6715 |
dc.identifier.uri | http://hdl.handle.net/2117/104661 |
dc.description.abstract | We propose a joint model to analyze the structure and intensity of the association between longitudinal measurements of an ordinal marker and time to a relevant event. The longitudinal process is defined in terms of a proportional-odds cumulative logit model. Time-to-event is modeled through a left-truncated proportional-hazards model, which incorporates information of the longitudinal marker as well as baseline covariates. Both longitudinal and survival processes are connected by means of a common vector of random effects.
General inferences are discussed under the Bayesian approach and include the posterior distribution of the probabilities associated to each longitudinal category and the assessment of the impact of the baseline covariates and the longitudinal marker on the hazard function. The flexibility provided by the joint model makes possible to dynamically estimate individual event-free probabilities and predict future longitudinal marker values.
The model is applied to the assessment of breast cancer risk in women attending a population-based screening program. The longitudinal ordinal marker is mammographic breast density measured with the Breast Imaging Reporting and Data System (BI-RADS) scale in biennial screening exams. © 2016 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd. |
dc.format.extent | 16 p. |
dc.language.iso | eng |
dc.rights | Attribution-NonCommercial-NoDerivs 3.0 Spain |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/es/ |
dc.subject | Àrees temàtiques de la UPC::Matemàtiques i estadística::Investigació operativa |
dc.subject.other | BI-RADS scale |
dc.subject.other | Latent process |
dc.subject.other | left-truncated proportional-hazards model |
dc.subject.other | Proportional-odds cumulative logit model |
dc.title | Bayesian joint ordinal and survival modeling for breast cancer risk assessment |
dc.type | Article |
dc.contributor.group | Universitat Politècnica de Catalunya. GRBIO - Grup de Recerca en Bioestadística i Bioinformàtica |
dc.identifier.doi | 10.1002/sim.7065 |
dc.description.peerreviewed | Peer Reviewed |
dc.subject.ams | Classificació AMS::90 Operations research, mathematical programming |
dc.relation.publisherversion | http://onlinelibrary.wiley.com/doi/10.1002/sim.7065/abstract |
dc.rights.access | Open Access |
local.identifier.drac | 19722033 |
dc.description.version | Postprint (author's final draft) |
local.citation.author | Armero, C.; Forné, C.; Rué, M.; Forte, A.; Perpiñán, H.; Gomez, G.; Bare, M. |
local.citation.publicationName | Statistics in medicine |
local.citation.volume | 35 |
local.citation.number | 28 |
local.citation.startingPage | 5267 |
local.citation.endingPage | 5282 |
dc.identifier.pmid | 27523800 |