Show simple item record

dc.contributor.authorArmero, Carmen
dc.contributor.authorForné, Carles
dc.contributor.authorRué, Montserrat
dc.contributor.authorForte Deltell, Anabel
dc.contributor.authorPerpiñán Fabuel, Hèctor
dc.contributor.authorGómez Melis, Guadalupe
dc.contributor.authorBare Mañas, Maris
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Estadística i Investigació Operativa
dc.date.accessioned2017-05-22T06:51:26Z
dc.date.available2017-12-01T01:30:27Z
dc.date.issued2016-12-10
dc.identifier.citationArmero, C., Forné, C., Rué, M., Forte, A., Perpiñán, H., Gomez, G., Bare, M. Bayesian joint ordinal and survival modeling for breast cancer risk assessment. "Statistics in medicine", 10 Desembre 2016, vol. 35, núm. 28, p. 5267-5282.
dc.identifier.issn0277-6715
dc.identifier.urihttp://hdl.handle.net/2117/104661
dc.description.abstractWe propose a joint model to analyze the structure and intensity of the association between longitudinal measurements of an ordinal marker and time to a relevant event. The longitudinal process is defined in terms of a proportional-odds cumulative logit model. Time-to-event is modeled through a left-truncated proportional-hazards model, which incorporates information of the longitudinal marker as well as baseline covariates. Both longitudinal and survival processes are connected by means of a common vector of random effects. General inferences are discussed under the Bayesian approach and include the posterior distribution of the probabilities associated to each longitudinal category and the assessment of the impact of the baseline covariates and the longitudinal marker on the hazard function. The flexibility provided by the joint model makes possible to dynamically estimate individual event-free probabilities and predict future longitudinal marker values. The model is applied to the assessment of breast cancer risk in women attending a population-based screening program. The longitudinal ordinal marker is mammographic breast density measured with the Breast Imaging Reporting and Data System (BI-RADS) scale in biennial screening exams. © 2016 The Authors. Statistics in Medicine Published by John Wiley & Sons Ltd.
dc.format.extent16 p.
dc.language.isoeng
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Spain
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Investigació operativa
dc.subject.otherBI-RADS scale
dc.subject.otherLatent process
dc.subject.otherleft-truncated proportional-hazards model
dc.subject.otherProportional-odds cumulative logit model
dc.titleBayesian joint ordinal and survival modeling for breast cancer risk assessment
dc.typeArticle
dc.contributor.groupUniversitat Politècnica de Catalunya. GRBIO - Grup de Recerca en Bioestadística i Bioinformàtica
dc.identifier.doi10.1002/sim.7065
dc.description.peerreviewedPeer Reviewed
dc.subject.amsClassificació AMS::90 Operations research, mathematical programming
dc.relation.publisherversionhttp://onlinelibrary.wiley.com/doi/10.1002/sim.7065/abstract
dc.rights.accessOpen Access
local.identifier.drac19722033
dc.description.versionPostprint (author's final draft)
local.citation.authorArmero, C.; Forné, C.; Rué, M.; Forte, A.; Perpiñán, H.; Gomez, G.; Bare, M.
local.citation.publicationNameStatistics in medicine
local.citation.volume35
local.citation.number28
local.citation.startingPage5267
local.citation.endingPage5282
dc.identifier.pmid27523800


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record