Show simple item record

dc.contributorRomero Moral, Óscar
dc.contributorJovanovic, Petar
dc.contributor.authorKaluzka, Justyna
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament d'Enginyeria de Serveis i Sistemes d'Informació
dc.date.accessioned2017-05-15T14:10:35Z
dc.date.available2017-05-15T14:10:35Z
dc.date.issued2016-07
dc.identifier.urihttp://hdl.handle.net/2117/104450
dc.description.abstractCurrent market tendencies show the need of storing and processing rapidly growing amounts of data. Therefore, it implies the demand for distributed storage and data processing systems. The Apache Hadoop is an open-source framework for managing such computing clusters in an effective, fault-tolerant way. Dealing with large volumes of data, Hadoop, and its storage system HDFS (Hadoop Distributed File System), face challenges to keep the high efficiency with computing in a reasonable time. The typical Hadoop implementation transfers computation to the data, rather than shipping data across the cluster. Otherwise, moving the big quantities of data through the network could significantly delay data processing tasks. However, while a task is already running, Hadoop favours local data access and chooses blocks from the nearest nodes. Next, the necessary blocks are moved just when they are needed in the given ask. For supporting the Hadoop’s data locality preferences, in this thesis, we propose adding an innovative functionality to its distributed file system (HDFS), that enables moving data blocks on request. In-advance shipping of data makes it possible to forcedly redistribute data between nodes in order to easily adapt it to the given processing tasks. New functionality enables the instructed movement of data blocks within the cluster. Data can be shifted either by user running the proper HDFS shell command or programmatically by other module like an appropriate scheduler. In order to develop such functionality, the detailed analysis of Apache Hadoop source code and its components (specifically HDFS) was conducted. Research resulted in a deep understanding of internal architecture, what made it possible to compare the possible approaches to achieve the desired solution, and develop the chosen one.
dc.language.isoeng
dc.publisherUniversitat Politècnica de Catalunya
dc.subjectÀrees temàtiques de la UPC::Informàtica
dc.subject.lcshManagement information systems
dc.titleData locality in Hadoop
dc.typeMaster thesis
dc.subject.lemacSistemes d'informació per a la gestió
dc.identifier.slug116331
dc.rights.accessOpen Access
dc.date.updated2016-07-06T06:27:14Z
dc.audience.educationlevelMàster
dc.audience.mediatorFacultat d'Informàtica de Barcelona
dc.audience.degreeMÀSTER UNIVERSITARI EN INNOVACIÓ I RECERCA EN INFORMÀTICA (Pla 2012)


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record