Ir al contenido (pulsa Retorno)

Universitat Politècnica de Catalunya

    • Català
    • Castellano
    • English
    • LoginRegisterLog in (no UPC users)
  • mailContact Us
  • world English 
    • Català
    • Castellano
    • English
  • userLogin   
      LoginRegisterLog in (no UPC users)

UPCommons. Global access to UPC knowledge

Banner header
68.762 UPC E-Prints
You are here:
View Item 
  •   DSpace Home
  • E-prints
  • Grups de recerca
  • ROBiri - Grup de Percepció i Manipulació Robotitzada de l'IRI
  • Articles de revista
  • View Item
  •   DSpace Home
  • E-prints
  • Grups de recerca
  • ROBiri - Grup de Percepció i Manipulació Robotitzada de l'IRI
  • Articles de revista
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

A bayesian approach to simultaneously recover camera pose and non-rigid shape from monocular images

Thumbnail
View/Open
1786-A-Bayesian-Approach-to-Simultaneously-Recover-Camera-Pose-and-Non-Rigid-Shape-from-Monocular-Images.pdf (5,357Mb)
 
10.1016/j.imavis.2016.05.012
 
  View UPCommons Usage Statistics
  LA Referencia / Recolecta stats
Includes usage data since 2022
Cita com:
hdl:2117/104426

Show full item record
Moreno-Noguer, FrancescMés informació
Porta Pleite, Josep MariaMés informacióMés informació
Document typeArticle
Defense date2016
Rights accessOpen Access
Attribution-NonCommercial-NoDerivs 3.0 Spain
This work is protected by the corresponding intellectual and industrial property rights. Except where otherwise noted, its contents are licensed under a Creative Commons license : Attribution-NonCommercial-NoDerivs 3.0 Spain
Abstract
In this paper we bring the tools of the Simultaneous Localization and Map Building (SLAM) problem from a rigid to a deformable domain and use them to simultaneously recover the 3D shape of non-rigid surfaces and the sequence of poses of a moving camera. Under the assumption that the surface shape may be represented as a weighted sum of deformation modes, we show that the problem of estimating the modal weights along with the camera poses, can be probabilistically formulated as a maximum a posteriori estimate and solved using an iterative least squares optimization. In addition, the probabilistic formulation we propose is very general and allows introducing different constraints without requiring any extra complexity. As a proof of concept, we show that local inextensibility constraints that prevent the surface from stretching can be easily integrated. An extensive evaluation on synthetic and real data, demonstrates that our method has several advantages over current non-rigid shape from motion approaches. In particular, we show that our solution is robust to large amounts of noise and outliers and that it does not need to track points over the whole sequence nor to use an initialization close from the ground truth.
Description
© <year>. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/
CitationMoreno-Noguer, F., Porta, J.M. A bayesian approach to simultaneously recover camera pose and non-rigid shape from monocular images. "Image and vision computing", 2016, vol. 52, p. 141-153. 
URIhttp://hdl.handle.net/2117/104426
DOI10.1016/j.imavis.2016.05.012
ISSN0262-8856
Publisher versionhttp://www.sciencedirect.com/science/article/pii/S0262885616300981
Collections
  • ROBiri - Grup de Percepció i Manipulació Robotitzada de l'IRI - Articles de revista [176]
  • IRI - Institut de Robòtica i Informàtica Industrial, CSIC-UPC - Articles de revista [399]
  • KRD - Cinemàtica i Disseny de Robots - Articles de revista [25]
  View UPCommons Usage Statistics

Show full item record

FilesDescriptionSizeFormatView
1786-A-Bayesian ... -from-Monocular-Images.pdf5,357MbPDFView/Open

Browse

This CollectionBy Issue DateAuthorsOther contributionsTitlesSubjectsThis repositoryCommunities & CollectionsBy Issue DateAuthorsOther contributionsTitlesSubjects

© UPC Obrir en finestra nova . Servei de Biblioteques, Publicacions i Arxius

info.biblioteques@upc.edu

  • About This Repository
  • Metadata under:Metadata under CC0
  • Contact Us
  • Send Feedback
  • Privacy Settings
  • Inici de la pàgina