Show simple item record

dc.contributor.authorHamidoune, Yahya Ould
dc.contributor.authorRué Perna, Juan José
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Matemàtiques
dc.date.accessioned2017-05-15T09:11:57Z
dc.date.available2017-12-01T01:30:22Z
dc.date.issued2011-03-01
dc.identifier.citationHamidoune, Y.O., Rue, J. A lower bound for the size of a Minkowski sum of dilates. "Combinatorics probability and computing", 1 Març 2011, vol. 20, núm. 2, p. 249-256.
dc.identifier.issn0963-5483
dc.identifier.urihttp://hdl.handle.net/2117/104404
dc.description.abstractLet A be a finite non-empty set of integers. An asymptotic estimate of the size of the sum of several dilates was obtained by Bukh. The unique known exact bound concerns the sum |A + k·A|, where k is a prime and |A| is large. In its full generality, this bound is due to Cilleruelo, Serra and the first author. Let k be an odd prime and assume that |A| > 8kk. A corollary to our main result states that |2·A + k·A|=(k+2)|A|-k2-k+2. Notice that |2·P+k·P|=(k+2)|P|-2k, if P is an arithmetic progression.
dc.format.extent8 p.
dc.language.isoeng
dc.rightsAttribution-NonCommercial-NoDerivs 3.0 Spain
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
dc.subjectÀrees temàtiques de la UPC::Matemàtiques i estadística::Anàlisi matemàtica::Anàlisi funcional
dc.subject.lcshFunctional analysis
dc.subject.otherMinkowski sum
dc.titleA lower bound for the size of a Minkowski sum of dilates
dc.typeArticle
dc.subject.lemacAnàlisi funcional
dc.contributor.groupUniversitat Politècnica de Catalunya. MD - Matemàtica Discreta
dc.identifier.doi10.1017/S0963548310000520
dc.rights.accessOpen Access
local.identifier.drac17744334
dc.description.versionPostprint (author's final draft)
local.citation.authorHamidoune, Y.O.; Rue, J.
local.citation.publicationNameCombinatorics probability and computing
local.citation.volume20
local.citation.number2
local.citation.startingPage249
local.citation.endingPage256


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record