Mostra el registre d'ítem simple

dc.contributor.authorTorras Ortiz, Santiago
dc.contributor.authorCastro González, Jesús
dc.contributor.authorRigola Serrano, Joaquim
dc.contributor.authorMorales, Sergio
dc.contributor.authorGalione Klot, Pedro Andrés
dc.contributor.authorLehmkuhl Barba, Oriol
dc.contributor.authorOliva Llena, Asensio
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Màquines i Motors Tèrmics
dc.date.accessioned2017-05-12T15:49:27Z
dc.date.issued2014
dc.identifier.citationTorras, S., Castro, J., Rigola, J., Morales, S., Galione, P.A., Lehmkuhl, O., Oliva, A. Numerical modeling and experimental validation of Thermal Energy Storage tanks for propulsion systems under cryogenic conditions. A: Eurotherm Seminar. "Advances in thermal energy storage: Eurotherm seminar 99: Lleida, Spain, 28-30 May 2014". Lleida: 2014, p. 1-10.
dc.identifier.isbn9788469704677
dc.identifier.urihttp://hdl.handle.net/2117/104378
dc.description.abstractLow Thrust Cryogenic Propulsion (LTCP) systems [1] need a thermal energy storage acting as a heat accumulator, where a cryogenic flow of (LOx) propellant is gasified inside, under a fast transient evaporation process. The heat accumulator is heated by means of a secondary fluid (typically He or N2) which is exchanged from fuel cells. The heat exchanged or stored between both fluid flows is assured by means of a thermal energy storage tank filled of a Phase Change Material (PCM). A numerical model of the thermal and fluid-dynamic behavior of the two-phase flow inside ducts working under cryogenic conditions, coupled with the analysis of the PCM accumulator is proposed [2]. The numerical analysis is based on: i) a one-dimensional and transient integration of the governing equations (conservation of mass, momentum and energy) for the fluid flow of propellant, and ii) a multi-dimensional and transient integration of the conservative governing equations in the region occupied by the PCM, taking into account turbulence modeling for solving the convection phenomena involved. The solid elements are modeled considering a multidimensional and transient treatment of the thermal conduction equation. The numerical results are experimentally validated by means of a series of experimental tests [3] [4]. The comparative analysis shows the good agreement between both numerical results and experimental data. Different results under working conditions of the cryogenic flow and/or the PCM material, shows the possibility of this model for design optimization purposes.
dc.format.extent10 p.
dc.language.isoeng
dc.subjectÀrees temàtiques de la UPC::Enginyeria mecànica::Mecànica de fluids
dc.subject.lcshHeat storage
dc.subject.lcshPropulsion systems
dc.subject.otherThermal energy storage
dc.subject.otherCryogenic conditions
dc.subject.otherPhase change materials
dc.subject.otherNumerical modeling
dc.subject.otherexperimental comparison
dc.titleNumerical modeling and experimental validation of Thermal Energy Storage tanks for propulsion systems under cryogenic conditions
dc.typeConference lecture
dc.subject.lemacCalor -- Emmagatzematge
dc.subject.lemacSistemes de propulsió
dc.contributor.groupUniversitat Politècnica de Catalunya. CTTC - Centre Tecnològic de la Transferència de Calor
dc.description.peerreviewedPeer Reviewed
dc.rights.accessRestricted access - publisher's policy
local.identifier.drac15520611
dc.description.versionPostprint (published version)
dc.date.lift10000-01-01
local.citation.authorTorras, S.; Castro, J.; Rigola, J.; Morales, S.; Galione, P.A.; Lehmkuhl, O.; Oliva, A.
local.citation.contributorEurotherm Seminar
local.citation.pubplaceLleida
local.citation.publicationNameAdvances in thermal energy storage: Eurotherm seminar 99: Lleida, Spain, 28-30 May 2014
local.citation.startingPage1
local.citation.endingPage10


Fitxers d'aquest items

Imatge en miniatura

Aquest ítem apareix a les col·leccions següents

Mostra el registre d'ítem simple