Mostra el registre d'ítem simple

dc.contributor.authorVentosa Molina, Jordi
dc.contributor.authorLehmkuhl Barba, Oriol
dc.contributor.authorPérez Segarra, Carlos David
dc.contributor.authorOliva Llena, Asensio
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Física
dc.contributor.otherUniversitat Politècnica de Catalunya. Departament de Màquines i Motors Tèrmics
dc.contributor.otherBarcelona Supercomputing Center
dc.date.accessioned2017-05-11T10:22:17Z
dc.date.available2018-04-26T00:30:29Z
dc.date.issued2017-04-26
dc.identifier.citationVentosa-Molina, J., Lehmkuhl, O., Perez, C., Oliva, A. Large eddy simulation of a turbulent diffusion flame: some aspects of subgrid modelling consistency. "Flow turbulence and combustion", 26 Abril 2017, vol. 99, num. 1, p.209-238.
dc.identifier.issn1386-6184
dc.identifier.urihttp://hdl.handle.net/2117/104310
dc.descriptionThis is a copy of the author 's final draft version of an article published in the journal Flow turbulence and combustion. The final publication is available at Springer via http://dx.doi.org/10.1007/s10494-017-9813-2
dc.description.abstractIn the context of Large Eddy Simulation (LES) solely for the momentum transport equation there may be found several models for the turbulent subgrid fluxes. Furthermore, among those relying on the eddy diffusivity approach, each model may be based on different invariants of the strain rate. Besides, when heat and mass transfer are also considered, closures for the subgrid turbulent scalar fluxes are also required. Hence, different model combinations may be considered. Additionally, when other physical phenomena are included, such as combustion, further subgrid modelling is involved. Therefore, in the present study a LES simulation of a turbulent diffusion flame is performed and different combination of subgrid models are used in order to analyse the numerical effects in the simulations. Several models for the turbulent momentum subgrid fluxes are considered, both constant and dynamically evaluated Schmidt numbers. Regarding combustion, in the context of the Flamelet/Progress-Variable (FPV) model, with an assumed probability density function for the turbulent-chemistry interactions and four different closures for the subgrid mixture fraction variance are considered. Hence, a large number of model combinations are possible. The present study highlights the need for a consistent closure of subgrid effects. It is shown that, in the context of an FPV modelling, incorrect capture of subgrid mixing results in a flame lift-off for the studied flame (DLR A diffusion flame), even though experimentally an attached flame was reported. It is found that a consistent formulation is required, that is, all subgrid closures should become active in the same regions of the domain to avoid modelling inconsistencies. In contrast, when the classical flamelet approach is used, no lift-off is observed. The reason is that the classical flamelet includes only a limited subset of the possible flame states, i.e. only includes burning flamelets and extinguished flamelets for scalar dissipation rates past the extinction one.
dc.description.sponsorshipThe present work has been financially supported by the Ministerio de Economía y Competitividad of the Spanish government through project ENE2014-60577-R. We would also like to thank the reviewers for their helpful comments which have led to an improved article. The authors declare that they have no conflict of interest.
dc.language.isoeng
dc.subjectÀrees temàtiques de la UPC::Enginyeria mecànica::Mecànica de fluids
dc.subject.lcshFluid dynamics
dc.subject.lcshTurbulence--Mathematical models
dc.subject.otherTurbulent diffusion flame
dc.subject.otherMixture fraction variance
dc.subject.otherSubgrid scalar dissipation rate
dc.subject.otherFlamelet/progress-variable
dc.subject.otherTurbulence modelling
dc.titleLarge eddy simulation of a turbulent diffusion flame: some aspects of subgrid modelling consistency
dc.typeArticle
dc.subject.lemacDinàmica de fluids
dc.subject.lemacTurbulència -- Models matemàtics
dc.contributor.groupUniversitat Politècnica de Catalunya. CTTC - Centre Tecnològic de la Transferència de Calor
dc.identifier.doi10.1007/s10494-017-9813-2
dc.description.peerreviewedPeer Reviewed
dc.relation.publisherversionhttp://link.springer.com/article/10.1007%2Fs10494-017-9813-2
dc.rights.accessOpen Access
local.identifier.drac20330586
dc.description.versionPostprint (author's final draft)
dc.relation.projectidinfo:eu-repo/grantAgreement/MINECO//ENE2014-60577-R/ES/DESARROLLO DE CODIGOS Y ALGORITMOS PARALELOS DE ALTAS PRESTACIONES PARA LA MEJORA DE LA EFICIENCIA EN LOS SECTORES EOLICO, SOLARTERMICO Y EDIFICACION/
dc.relation.projectidinfo:eu-repo/grantAgreement/MINECO//ENE2014-60577-R/ES/DESARROLLO DE CODIGOS Y ALGORITMOS PARALELOS DE ALTAS PRESTACIONES PARA LA MEJORA DE LA EFICIENCIA EN LOS SECTORES EOLICO, SOLARTERMICO Y EDIFICACION/
local.citation.authorVentosa-Molina, J.; Lehmkuhl, O.; Perez, C.; Oliva, A.
local.citation.publicationNameFlow turbulence and combustion
local.citation.volume99
local.citation.number1
local.citation.startingPage209
local.citation.endingPage238


Fitxers d'aquest items

Thumbnail

Aquest ítem apareix a les col·leccions següents

Mostra el registre d'ítem simple