A discrete labelling approach to attributed graph matching using SIFT features
View/Open
Cita com:
hdl:2117/10429
Document typeConference report
Defense date2010
Rights accessOpen Access
Except where otherwise noted, content on this work
is licensed under a Creative Commons license
:
Attribution-NonCommercial-NoDerivs 3.0 Spain
Abstract
Local invariant feature extraction methods are widely used for image-features matching. There exist a number of approaches aimed at the refinement of the matches between image-features. It is a common strategy among these approaches to use geometrical criteria to reject a subset of outliers. One limitation of the outlier rejection design is that it is unable to add new useful matches. We present a new model that integrates the local information of the SIFT descriptors along with global geometrical information to estimate a new robust set of feature-matches. Our approach encodes the geometrical information by means of graph structures while posing the estimation of the feature-matches as a graph matching problem. Some comparative experimental results are presented.
CitationSanromà, G.; Alquezar, R.; Serratosa, F. A discrete labelling approach to attributed graph matching using SIFT features. A: International Conference on Pattern Recognition. "20th International Conference on Pattern Recognition". 2010, p. 954-957.
Publisher versionhttp://dx.doi.org/10.1109/ICPR.2010.239
Files | Description | Size | Format | View |
---|---|---|---|---|
serratosa drac.pdf | 167,3Kb | View/Open |